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A B S T R A C T

Evapotranspiration (ET) is a fundamental process linking the energy, water, and carbon cycles in terrestrial 
ecosystems. In dryland regions like Northwest China, where water availability strongly constrains ecosystem 
functioning, understanding the spatiotemporal dynamics of actual evapotranspiration (ETa) and its controlling 
mechanisms is critical for ecohydrological assessments under climate change. However, these regions face 
persistent challenges due to sparse vegetation, heterogeneous soils, and limited observations, which impede 
accurate regional-scale ETa quantification and attribution analysis. This study investigates the spatiotemporal 
patterns and controlling factors of ETa in Northwest China from 2001 to 2024 using the Priestley-Taylor Jet 
Propulsion Laboratory (PT-JPL) model optimized with remote sensing and flux observations. The model was 
optimized using 16 flux towers, achieving an R2 of 0.74 and enabling reliable regional ETa estimation under data- 
scarce conditions. The optimized model produced multi-year average ETa of 292.2 mm and an increasing trend of 
0.43 mm yr− 1. ETa exhibited a clear spatial gradient, higher in the east, lower in the west, corresponding to 
vegetation and water availability. Importantly, standardized ridge regression revealed that environmental factors 
explained 83.4 % of ETa variability, with relative humidity alone contributing the largest share (33.6 %). 
Vegetation dynamics accounted for 16.6 %, primarily associated with farmland expansion and afforestation. This 
findings offer a robust framework for disentangling ETa drivers in data-scarce drylands and underscore the 
dominant role of both atmospheric humidity and land cover change in shaping regional evapotranspiration 
patterns. This study delivers valuable insights for sustainable water and land resource management under 
climate change.

1. Introduction

Evapotranspiration (ET) plays a fundamental role in linking terres
trial energy, water, and carbon cycles (Fisher et al., 2008; Li et al., 
2023). Globally, more than 60 % of precipitation returns to the 

atmosphere through ET (Jasechko et al., 2013), and rising ET rates 
driven by climate change are exacerbating hydrological extremes (Oki 
and Kanae, 2006). In dryland regions, ET is influenced by complex in
teractions among climate, vegetation, and water availability, particu
larly soil moisture and groundwater (Wang et al., 2023, 2021). Land use 
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and land cover changes caused by human activities further reshape ET 
patterns by altering vegetation structure and surface properties (Wang 
et al., 2014; Li et al., 2016). These shifts have important implications for 
ecosystem functions, hydrological processes, and water resource sus
tainability. Given that ET serves as a key exchange flux between 
terrestrial ecosystems and the atmosphere (Zhao et al., 2020), accurately 
monitoring its dynamics and identifying dominant driving factors is 
essential for understanding ecohydrological feedbacks under climate 
change. ET primarily comprises soil evaporation and vegetation tran
spiration, which respond differently to environmental drivers. While soil 
evaporation is regulated by surface and atmospheric conditions, vege
tation transpiration is mainly related to the growth status of vegetation, 
soil water availability, and environmental conditions (Hu et al., 2024; 
Wang et al., 2021). Consequently, ET spatiotemporal variability is 
jointly driven by air temperature, humidity, precipitation, radiation, 
vegetation activity, and water availability (Hu et al., 2024; Li et al., 
2022; Ma and Zhang, 2022). Dryland regions—accounting for over 40 % 
of the global land surface—are especially vulnerable to climate extremes 
and human disturbance (Wang et al., 2023, 2019b). Northwest China 
(NWC) is a representative dryland region facing persistent water scar
city, high potential ET, and fragile ecological conditions (Wang et al., 
2021, 2019a). Although previous studies have examined ET patterns and 
their drivers across multiple spatial scales (Liu et al., 2021; Ma and 
Zhang, 2022; Niu et al., 2019; Yang et al., 2022; Zhao et al., 2023), most 
assessments rely on coarse-resolution data or general regression models. 
As a result, the relative contributions of climatic, biological, and sub
surface hydrological factors to ET variability in data-scarce drylands 
remain insufficiently quantified. This knowledge gap limits the ability to 
support water resource planning under climate change.

Although numerous remote sensing products are available at various 
spatiotemporal resolutions, significant uncertainties persist between 
different datasets, with potential discrepancies reaching up to 30 % (Zou 
et al., 2017). As research on ET continues to grow, a wide range of 
remote sensing-based models have been developed to address these 
challenges (Bastiaanssen et al., 1998; Mu et al., 2011; Zhang et al., 
2019). These include energy balance-based models such as METRIC 
(Allen et al., 2007), SEBAL (Bastiaanssen et al., 1998) and TSEB (Kustas 
and Norman, 1999), as well as physical or semi-empirical models like 
MOD16 (Mu et al., 2011) and PML (Zhang et al., 2019). Energy balance 
models rely on high-resolution thermal data and are well-suited for 
field- to watershed-scale applications; however, they may face limita
tions in large-scale, long-term monitoring due to data availability and 
computational complexity. In contrast, models such as MOD16 and PML 
provide physically based yet operationally efficient alternatives that are 
particularly useful for regional- to global-scale ET estimation. Never
theless, these products often lack sufficient validation in arid ecosystems 
due to sparse flux tower coverage, leading to considerable uncertainties 
when applied in drylands such as NWC. Among various models, the 
Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model (Fisher et al., 
2008) stands out by addressing the limitations of the Penman-Monteith 
(PM) model, particularly the uncertainty related to canopy and aero
dynamic resistance. Its minimal parameterization requirements and 
compatibility with satellite-derived inputs make it especially suitable for 
data-scarce, heterogeneous dryland regions (Li et al., 2022). Further
more, the availability of cloud-based platforms such as Google Earth 
Engine (GEE) greatly facilitates the implementation of large-scale ET 
modeling and analysis.

Although ET models including PT-JPL have been widely used, the 
simulated ET may exhibit significant instability due to uncertainties in 
model structure, input data, and parameters (Wang et al., 2019a). In-situ 
ET flux observations, particularly from eddy covariance (EC) towers, 
provide a valuable basis for model calibration and have been widely 
utilized to optimize parameters (Niu et al., 2020; Zhang et al., 2017). 
Among optimization techniques, the Markov chain Monte Carlo 
(MCMC) approach is commonly employed to quantify model uncer
tainty and optimize parameters (Zhu et al., 2014; Wang et al., 2019a), 

though it often suffers from slow convergence (Haario et al., 2006). To 
address these issues, we adopted the Differential Evolution Markov 
Chain (DE-MC) algorithm, which integrates global optimization capa
bilities of differential evolution and is better suited for high-dimensional 
parameter calibration (Braak, 2006). This enabled land cover-specific 
parameter optimization of the PT-JPL model across six typical 
ecosystem types in NWC.

While ET drivers have been extensively studied at local and global 
scales, few studies have conducted regionally calibrated and 
observation-constrained assessments that integrate vegetation, climate, 
and groundwater influences in arid zones. Traditional multiple regres
sion methods are often limited by multicollinearity (Li et al., 2022; Yang 
et al., 2022), whereas ridge regression has been shown to effectively 
isolate the relative effects of vegetation and climatic variables on ETa 
(Katul et al., 2012; Zhao et al., 2023). This is especially important in 
heterogeneous dryland environments, where the interplay between 
vegetation dynamics, subsurface water availability, and meteorological 
forcing remains poorly understood.

In this study, we optimized the PT-JPL model with remote sensing 
and EC data and then used the optimized model to quantify ETa dy
namics in NWC from 2001 to 2024. Specifically, we aimed: (1) to 
investigate the spatiotemporal patterns of ETa based on land cover- 
specific model calibration; (2) to assess the relative contributions of 
vegetation dynamics, climatic variables, and water availability using 
partial correlation and ridge regression; and (3) to explore how land use 
change modulates ETa patterns. This framework provides an improved 
basis for understanding water cycle dynamics and informing water re
sources management strategies in dryland regions.

2. Materials and methods

2.1. Study area

Northwestern China, located in the interior of Eurasia, encompasses 
the provinces or autonomous regions of Ningxia, Xinjiang, Gansu, 
Qinghai, and Shaanxi, along with the western portion of Inner Mongolia 
(i.e., Alxa League), covering an area of approximately 3.53 million km2. 
The region’s terrain is complex, dominated by a mix of plateaus, 
mountains, and basins (Fig. 1). Major mountain ranges, including the 
Qinling, Qilian, Tianshan and Kunlun Mountains, among others, not 
only provide the topographical backbone of the region but also crucial 
water sources for oasis agriculture (Chen et al., 2015). Key geographical 
units, such as the Qinghai-Tibet Plateau (QTP), Tarim Basin, Junggar 
Basin, Taklamakan Desert, Hexi Corridor, Loess Plateau, and Qaidam 
Basin, are characterized by towering mountains and expansive basins 
(Wang et al., 2020).

The region experiences a mix of temperate continental and alpine 
climates, with some areas influenced by a temperate monsoon climate in 
the southeast. This diverse climatic pattern (Yang et al., 2022), along 
with high temperature variability (average annual temperature of 
approximately 4.5◦C, with extremes ranging from − 30◦C and 40◦C), is 
reflected in its fragile and sensitive ecosystems (Katul et al., 2012; Shi 
et al., 2007). Precipitation is extremely low, with one-third of the region 
receiving less than 50 mm annually. The region’s precipitation gradient 
varies from 200 mm to 800 mm depending on the elevation and prox
imity to mountains, with higher amounts concentrated in the south
eastern regions (Chi et al., 2023; Liang et al., 2023). The diverse climatic 
conditions and the fragile ecosystem in this region play a crucial role in 
shaping the region’s water balance and ET dynamics.

2.2. Eddy covariance data processing and quality control

The eddy covariance (EC) technique is a well-established method for 
measuring ET and validating ET estimation models (Lin et al., 2024; 
Wang et al., 2021). Through continuously measuring high-frequency 
water vapor exchange at the ecosystem scale, EC observations can 
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directly capture the temporal dynamics of ET. EC flux observations have 
been extensively utilized to investigate the variations of ET at regional 
scales widely (Wang et al., 2021). In this study, we selected a total of 16 
flux tower sites in NWC and neighboring areas to validate the model. 
These sites represent diverse dryland ecosystem types across NWC. The 
EC flux tower data were collected from the ChinaFLUX (Yu et al., 2006, 
2016), the HiWATER datasets in the Heihe River Basin (HRB) (Liu et al., 
2023; 2018), the dataset of Coordinated Observations and Integrated 
Research over Arid and Semi-arid China (COIRAS) (Wang et al., 2013a). 
Detailed metadata and references for each site are listed in Table 1.

The flux data were measured by an open-path EC system (i.e., CSAT- 
3, Campbell Sci. Ins. Inc., USA; and Li-7500A, Li-Cor Inc., USA), which 
were underwent standardized and rigorous quality control and correc
tion procedures. These included spike detection, sonic temperature 
correction, coordinate rotation, frequency response correction, and WPL 
correction (Webb et al., 1980; Yu et al., 2006; Liu et al., 2018; Wang 
et al., 2019b; Wang et al., 2013b). The raw 10 Hz EC data were pro
cessed into half-hourly fluxes a with data quality flags according to the 
stationary test (Allen et al., 2011; Foken et al., 2004; Liu et al., 2018). 
Based on site-specific publications and our calculations for the study 
period, average EBR values across all sites ranged from 0.71 to 0.95 
(overall mean 0.84; Table S1), exceeding the commonly accepted 
threshold (≈0.7). Thus, the EC datasets are considered robust for model 
evaluation. Further details on the data processing and site-specific fetch 
characteristics for these sites can be found in the original site docu
mentation referenced in Table 1.

2.3. Other data sources and processing

In this study, we utilize various remote sensing derived data and 
meteorological datasets to run the model. At the site scale, meteoro
logical data such as net radiation, relative humidity, and air temperature 
were derived from tower-based observational data. The processing 
procedures of the meteorological data for each site was described in the 
corresponding references in the Table 1.

The NDVI and Enhanced Vegetation Index (EVI) data were extracted 
from the MOD13A1 V6.1 dataset of MODIS (https://modis.gsfc.nasa. 
gov/), with a spatial resolution of 500 meters and temporal resolution 

of 16 days. The land cover type data for Northwestern China from 2001 
to 2024 were obtained from the MODIS MCD12Q1 V6.1 product 
(https://modis.gsfc.nasa.gov/), which is based on the Annual Interna
tional Geosphere-Biosphere Programme (IGBP) classification with a 
spatial resolution of 500 m. The land cover types were then reclassified 

Fig. 1. Study area of Northwest China, and the eddy covariance (EC) flux sites, along with the elevation and land cover type distributions. Additional information on 
the EC sites is presented in Table 1.

Table 1 
The location, duration, vegetation type, and reference for the 16 EC sites used in 
this study.

Name Lon 
(◦N)

Lat 
(◦E)

Time span Type Reference

A’rou 100.46 38.05 2013–2018 Grassland (Liu et al., 
2023, 2018)

Haibei 
grassland

101.31 37.61 2015–2020 Grassland (Zhang et al., 
2023b)

Maqu 102.15 33.86 2014–2019 Grassland (Meng et al., 
2023)

Changwu 107.68 35.23 2008–2009 Cropland ( Wang et al., 
2013b)

Daman 100.37 38.86 2013–2017 Cropland (Liu et al., 
2023, 2018)

Linze 100.13 39.35 2012–2015 Cropland (Ji et al., 2023)
Yingke 100.42 38.85 2008–2009 Cropland (Liu et al., 

2023, 2018)
Dangxiong 91.08 30.85 2004–2010 Forestland (Chai et al., 

2021)
Hunhelin 101.13 41.99 2015–2020 Forestland (Liu et al., 

2023, 2018)
Haibei 

shrubland
101.33 37.67 2011–2020 Shrubland (Zhang et al., 

2023a)
Yanchi 107.23 37.71 2012–2016 Shrubland (Han et al., 

2023)
Huazhaizi 100.32 38.77 2013–2017 Desert (Liu et al., 

2023, 2018)
Shenshawo 100.49 38.79 2012–2014 Desert (Liu et al., 

2023, 2018)
Fukang 87.93 44.28 2009 Desert (Liu et al., 

2012)
Haibei 

wetland
101.32 37.60 2004–2009 Wetland (Zhang et al., 

2021)
Zhangye 

wetland
100.45 38.98 2013–2017 Wetland (Liu et al., 

2023, 2018)
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into broad categories including forestland, shrubland, grassland, 
wetland, cropland, desert and others for the ET simulation process.

At the regional scale, meteorological forcing was obtained from the 
NASA Global Land Data Assimilation System V2.1 (GLDAS-2.1) rean
alysis datasets at 3-hourly resolution. We synthesized relevant meteo
rological variables such as precipitation, relative humidity, net solar 
radiation, soil moisture, and air temperature to daily values and then 
complied into 8-day composites for the model runs. All variables were 
resampled to match with spatial resolution of the MODIS products 
(500 m) using bilinear interpolation. Data processing and model 
execution were performed on the GEE platform. GLDAS-2.1 driver data 
showed strong agreement with flux tower meteorological observations 
in this study (Supplementary Fig. S1), supporting its reliability as input 
for regional-scale modeling in NWC. For groundwater depth (GWD) 
data, we used the GWD data derived from the long-term observational 
data of China Geological Environment Monitoring Groundwater Level 
Yearbook (2005–2022) developed by Wang et al. (2025). We extracted 
annual GWD composites for NWC from 2005 to 2022 and resampled 
them to 500 m spatial resolution using bilinear interpolation.

2.4. The ET model and parameter optimization

The Priestley-Taylor model was first proposed in 1972 for the esti
mation of potential evapotranspiration, and its theory and accuracy 
have been validated (Priestley and Taylor, 1972). The general form is as 
follows: 

LE = α Δ
Δ + γ

(Rn − G) (1) 

Fisher et al. (2008) developed the Priestly-Taylor Jet Propulsion 
Laboratory (PT-JPL) model, which integrates remotely sensed data and 
directly calculates the actual ET (ETa). The model separates the final 
evapotranspiration into three parts: transpiration from plant canopy 
(LEc), soil evaporation (LEs), as well as interception evaporation (LEi). 
The specific equations of the PT-JPL model are provided in Table 2.

where fwet is the relative surface moisture limitation factor; fsm is 
the soil moisture limitation factor; fg, ft and fm are the limitation factor of 
green canopy, temperature, and moisture, respectively. Rn refers to the 
net radiation; Rnc and Rns represent the portion of net radiation absorbed 
by the vegetation canopy and the soil surface, respectively; G corre
sponds to the soil heat flux; α denotes the Priestley-Taylor coefficient 
(set to 1.26); γ stands the psychrometric constant; and Δ denotes the 
gradient of the saturation vapor pressure curve.

In Bayesian theory, the posterior probability density function (PDF) 
for the model parameters (θ), conditioned on the observations (O) (i.e., 
p(θ|O)) is determined using prior knowledge about the parameters and 
the information obtained from model validations. This relationship is 
formulated as follows (Wang et al., 2019a): 

p(θ|O) =
p(θ)p(O|θ)

p(O)
(2) 

where p(θ) and p(O) denote the prior probability distribution of pa
rameters and posterior probability distribution of observations, respec
tively, while p(O|θ) represents the conditional probability density of ET 
observations based on prior information. For a dataset containing N 
observations, p(θ) can be defined as (Zhu et al., 2014): 

p(θ) =
∏N

i=1

1̅̅̅
̅̅̅

2π
√

σ
e−

(Obsi − Simi)
2

2σ2 (3) 

Here, Obsi denotes the i-th observation in a set of N data points; Simi 

represents the i-th of N simulation data (Braswell et al., 2005). The term 
σ is given as: 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(Obsi − Simi)

2
√

(4) 

By integrating the PT-JPL model with the EC flux tower based ET 
observations, we applied the DE-MC algorithm in optimizing the 
model’s sensitive parameters: m1, b1 and β in the model. The DE-MC 
algorithm, based on swarm intelligence, incorporates features of the 
differential evolution algorithm and the MCMC method (Braak, 2006). 
In this approach, N chains are run simultaneously, and proposals are 
generated using two randomly selected chains. This method helps to 
reduce the prior uncertainty of sensitive parameters and enhances the 
model’s accuracy. To improve regional parameter generalization, we 
classified the 16 flux tower sites into six dominant vegetation types 
based on MODIS land cover data (MCD12Q1 V6.1), and optimized 
PT-JPL parameters separately for each type. The resulting parameter 
sets were then applied spatially according to land cover distribution. 
Model optimization was evaluated using the Nash-Sutcliffe Efficiency 

Table 2 
Key Parameters and Equations of the PT-JPL Model for ET Estimation.

Parameter Description Equation Reference

LEa Latent heat flux LEc + LEs + LEi (Fisher 
et al., 
2008)

LEc Transpiration 
from plant 
canopy

(1 − fwet)fgft fmα Δ
Δ + γ

Rnc
(Fisher 
et al., 
2008; 
Priestley 
and Taylor, 
1972)

LEs Soil evaporation (
fwet +fsm

(
1 − fwet

) )
α Δ

Δ + γ
(Rns − G) (Fisher 

et al., 
2008; 
Priestley 
and Taylor, 
1972)

LEi Interception 
evaporation

fwetα
Δ

Δ + γ
Rnc

(Fisher 
et al., 
2008)

fwet Relative surface 
moisture 
limitation factor

RH4 (Fisher 
et al., 
2008)

fsm Soil moisture 
limitation factor

RHVPD/β (Fisher 
et al., 
2008)

fg Limitation 
factor of green 
canopy

fAPAR/fIPAR (Fisher 
et al., 
2008)

ft Limitation 
factor of 
temperature

e− ((Ta − Topt )/Topt )
2 (Niu et al., 

2019)

fm Limitation 
factor of 
moisture

fAPAR/fAPARmax (Fisher 
et al., 
2008)

Rnc Net radiation to 
the vegetation

Rn − Rns (Beer, 
1852; 
Denmead 
and Millar, 
1976)

Rns Net radiation to 
the soil

Rnexp ( − kRnLAI) (Beer, 
1852; 
Denmead 
and Millar, 
1976)

fAPAR Fraction of 
photosynthesis 
active radiation

m1EVI + b1 (Fisher 
et al., 
2008; Gao, 
2000; 
Huete 
et al., 
2002)

fIPAR Fraction of PAR 
absorbed by the 
canopy

m2NDVI + b2 (Fisher 
et al., 
2008; Gao, 
2000; 
Huete 
et al., 
2002)
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(NSE), a robust, dimensionless indicator commonly used in ecohydro
logical modeling.

2.5. Statistical analysis

2.5.1. ET trend analysis
To evaluate the annual variation trends of the optimized ET simu

lations in the Northwest Territories from 2001 to 2024, a linear 
regression model was applied based on the least squares approach. The 
ET trend, i.e., the slope of the linear model (θslope) was calculated using 
the following formula (Luo et al., 2018; Ren et al., 2022): 

θslope =
n
∑n

i=1iETi −
∑n

i=1i
∑n

i=1ETi

n
∑n

i=1i2 −
( ∑n

i=1i
)2 (5) 

where n is the number of years in the ET time series; and ETi refers to the 
annual cumulated ET for the i-th year. A positive value of θslope refers to 
an upward trend in ET over the study period. Conversely, a negative θ 
suggests a decrease in ET during the study period. Additionally, θ = zero 
implies no change in ET. The T-test was utilized to evaluate the signif
icance of the ET trend over time.

2.5.2. Partial correlation analysis
We employed partial correlation analysis to examine the relationship 

between ET and various influencing factors. This technique allows us to 
assess the impact of each variable while keeping the others constant. We 
analyzed how ET relates to each specific variable, considering the other 
five variables as controls. The detailed formula for Rxy,z(i), which denotes 
the partial correlation coefficient between variables x and y while ac
counting for the effect of z(i), is provided below (Gu et al., 2018; Liu 
et al., 2024; Marrelec et al., 2006): 

Rxy, z(i) =
Rxy − Rxz(i) • Ryz(i)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − Rxz(i)

2) •
(
1 − Ryz(i)

2)
√ (6) 

In this equation, Rxy, Rxz(i), and Ryz(i) indicate the correlation co
efficients between x, y, and z(i), respectively.

2.5.3. Relative contributions of the controlling factors
In dryland regions, ET is governed not only by atmospheric demand 

but also by the availability of water. Therefore, both energy-related and 
moisture-related variables were included to better represent the eco
hydrological constraints on ET dynamics. We utilized standardized ridge 
regression to investigate the contributions of various factors to ET dy
namics. Prior to analysis, both ET and the environment factors were 
standardized to remove the influence of unit variations on the regression 
coefficients. Ridge regression analysis was used to assess the effects of 
each biological and climatic factor on ET, utilizing the flowing formula: 

X = [NDVÍ , Pré , RHʹ, Rnʹ, SḾ ,Taʹ,GWʹ] (7) 

b = (XTX + λI)− 1XTET́ (8) 

ET’, NDVI’, Pre’, RH’, Rn’, SM’, Ta’ and GW’ are the standardized 
values of ET, NDVI, precipitation, relative humidity, net solar radiation, 
soil moisture, temperature and groundwater respectively. X is the in
dependent variable matrix, and b refers to the standardized ridge 
regression coefficient. λ and I denote the regularization parameter and 
the identity matrix, respectively.

We calculated the relative contributions of these factors to ET vari
ation by using ridge regression coefficients along with the standardized 
trends of each factor to determine the influence of different climatic 
elements on ET dynamics: 

ηi = bi • xi_trend (9) 

Ci =
|ηi|

|η1| + |η2| + |η3| + |η4| + |η5| + |η6| + |η7|
(10) 

where xi_trend is the normalized trend of independent variable, Ci denotes 
the relative contribution of the i-th factor (where i = 1–7) to ET vari
ability. This calculation allows us to identify the relative importance of 
each factor in driving ET changes. A larger Ci value indicates a greater 
influence of that specific factor on ET fluctuations.

2.5.4. Statistical evaluations
We evaluated the model’s accuracy by comparing its predicted ETa 

with observations from flux towers using a suite of commonly applied 
statistical metrics. These indicators were selected to assess model effi
ciency and quantify prediction error, which include: (1) Goodness-of-fit 
and model efficiency indicators: the coefficient of determination (R2) 
and the Nash-Sutcliffe Efficiency (NSE); (2) Error-based performance 
metrics: Root Mean Square Error (RMSE), Mean Bias Error (MBE), Mean 
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and 
Mean Bias Percentage Error (MBPE). The formulas and definitions of 
these evaluation metrics are provided in Supplementary Materials (Text 
S1). These metrics together offer a comprehensive evaluation of model 
accuracy and robustness across diverse environmental conditions.

3. Results

3.1. Validation of the optimized ETa model

Fig. 2 displays the validation outcomes of the 8-day average ETa 
values simulated by the PT-JPL model, both before and after parameters 
optimization, compared to the observed ETa data. In general, the PT-JPL 
showed a reliable performance using the default parameter settings. 
However, the overall performance of the model showed significant 
improved performances after model optimization. The R2 and NSE 
increased from 0.68 to 0.74 (an increase of 8.8 %) and 0.62–0.68 (an 
increase of 9.7 %), respectively, while the RMSE, MAE, and MBE 
decreased from 0.95 to 0.87 mm/day (a decrease of 8.4 %), 
0.62–0.53 mm/day (a decrease of 14.5 %), and − 0.34 to − 0.37 mm/ 
day, respectively. Since MBE is a signed metric, although its absolute 
value slightly increased after optimization, the overall bias remained 
within an acceptable range. Overall, the MAPE and MBPE across all sites 
are 14.4 % and − 10.1 %, respectively.

Furthermore, site-specific validation across different vegetation 
types (Supplementary Fig. S2) confirmed the robustness of the opti
mized model. The highest simulation accuracy was observed in grass
land (R2 = 0.87; NSE = 0.84), followed by shrubland, forestland, and 
desert ecosystems, which also exhibited low RMSE and MBE values. In 
contrast, performance in wetland areas was relatively weaker, with 
wetland showing the lowest R2 (0.61) and the highest RMSE (1.59 mm/ 
day). These results suggest that the optimized PT-JPL model performs 
best in ecosystems with simpler vegetation structures and more stable 
surface conditions.

3.2. Spatiotemporal variations of ETa

Fig. 3 illustrates the annual and seasonal variations in ETa across 
NWC from 2001 to 2024. During this period, the annual average ETa 
showed a slight increasing trend, with a rate of 0.43 mm/year and a 
determination coefficient (R2) of 0.32. Specifically, ETa increased from 
297.5 mm in 2001–330.6 mm in 2024, representing a total growth of 
11.1 % over the 24-year span. Seasonal patterns of ETa demonstrated 
noticeable differences. In summer, ETa showed an increasing trend of 
0.78 mm/year, with a mean value of 146.6 mm over the study period. In 
winter, ETa also increased, albeit more modestly, at a rate of 0.01 mm/ 
year, with a mean of approximately 1 mm. Conversely, spring ETa 
exhibited a slight decreasing trend of 0.22 mm/year, with a mean value 
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of 83.5 mm. Similarly, in autumn, ETa decreased at a rate of 0.13 mm/ 
year, with an average of 44.9 mm. These findings indicate that while the 
overall ETa in the region experienced a gradual upward trend, the sea
sonal dynamics varied, with increasing trends in summer and winter and 

decreasing trends in spring and autumn.
Fig. 4 illustrates the spatial distribution of the multi-year average ETa 

and its long-term trend across NWC from 2001 to 2024. During this 
period, the annual average ETa ranged from 0 to 843.4 mm, with a 

Fig. 2. Scatterplots between observed ETa (mm/day) and simulated ETa with all flux site data by PT-JPL before and after optimization. The black lines represent the 
1:1 lines, while the red lines indicate the linear regression results. The units for RMSE, MAE, and MBE were mm/day.

Fig. 3. The temporal variations of spatially averaged annual and seasonal ETa in Northwest China from 2001 to 2024.

Fig. 4. Spatial distribution of the multi-year average ETa (a) and its trend (b) from the PT-JPL model in NWC.
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regional multi-year mean of 292.2 mm. ETa shows a distinct east-west 
gradient, with higher values in the eastern regions and lower values in 
the west. The majority of the areas experienced no significant change in 
ETa. Specifically, only 13.9 % of the regions exhibited a highly signifi
cant increase in ETa, 9.2 % showed a slight increase, 26.2 % showed no 
significant change, and 50.7 % experienced a decrease in ETa values, 
with 20.1 % and 7.9 % showing highly significant and slightly signifi
cant decreases, respectively. The spatial distribution of ETa trends 
revealed notable regional heterogeneity. Significant increases in annual 
ETa (p < 0.01) were mainly concentrated in ecologically restored and 
vegetated zones of the southeastern region such as parts of the Loess 
Plateau, as well as in oasis zones surrounding desert margins in the 
northwestern region. In contrast, the central and western arid zones, 
particularly those with sparse vegetation or shifting land cover, 
exhibited minimal or slightly declining ETa trends. These patterns un
derscore the combined effects of ecological restoration, land use change, 
and climatic variability on ETa dynamics across dryland environments. 

Seasonal comparisons of ETa (Supplementary Fig. S3) indicate that 
evapotranspiration from annual vegetation is predominantly concen
trated in spring and summer, with minimal ETa observed during autumn 
and winter.

3.3. Impacts of vegetation dynamics and climate factors on ETa dynamics

Fig. 5 presents the spatial patterns of partial correlation coefficients 
between ETa and seven driving factors. NDVI shows a strong positive 
partial correlation with ETa in 97.6 % of vegetated areas, with negative 
coefficients (2.4 %) primarily on the Tibetan Plateau (Fig. 5a). Precipi
tation exhibits a predominantly positive correlation (64.6 %), with weak 
negative zones (35.4 %) in the central and eastern part of NWC (Fig. 5b). 
Relative humidity positive correlates with ETa in 99.3 % of the region, 
particularly in arid zones, while negative effects are limited to eastern 
part of NWC (Fig. 5c). Net radiation shows the highest consistency, with 
99.9 % of the region exhibiting strong positive correlation (Fig. 5d). Soil 

Fig. 5. Partial correlation coefficients between each factor and interannual ETa during the study period, with statistically significant at p < 0.05.

K. Liu et al.                                                                                                                                                                                                                                      Agricultural Water Management 321 (2025) 109941 

7 



moisture has a mixed impact, with 70.4 % positive and 29.6 % negative 
correlations, distributed irregularly (Fig. 5e). Air temperature positively 
affects 77.9 % of the region, mainly in highlands, while 22.1 % shows 
negative correlation, especially in central deserts (Fig. 5f). Groundwater 
shows a strong positive influence in 80.9 % of the region, especially in 
the oases of the Tarim Basin and the southern QTP (Fig. 5g).

3.4. Contributions of environmental factors and vegetation dynamics to 
ETa variability

We assessed the relative influences of vegetation dynamics and cli
matic factors on ETa variability in NWC by using the ridge regression 
(Fig. 6). Overall, both sets of factors significantly impacted ETa changes, 
with NDVI playing a dominant role in most of the vegetation zones in 
NWC, including the Qinling region, the Loess Plateau, the Tianshan re
gion, the Circum-Taklamakan Desert oasis zone, and parts of the Tibetan 
Plateau. In contrast, precipitation had a significantly weaker influence, 

playing the dominant role only in the Jungar Basin and small parts of the 
Tibetan Plateau. In the north-central section of the region, which in
cludes numerous deserts, relative humidity emerged as the primary 
factor, suggesting that humidity plays a vital role in influencing ETa 
within hyper-arid zones. In northwestern China, the dominant role of 
net radiation was correlated with altitude, being particularly influential 
in the Tien Shan Mountains, the Kunlun Mountains, the Altun Moun
tains, the Qilian Mountains, and much of the Tibetan Plateau. Similarly, 
the contribution of air temperature to ETa variation is associated with 
elevation. Fig. 6f illustrates that air temperature has a relatively higher 
contribution in the Tibetan Plateau, while its impact is less significant in 
low-elevation areas. In the northwestern part of NWC and the central- 
southern QTP, the changes in groundwater contribute significantly to 
the variation in ET (Fig. 6g).

Fig. 7a depicts the spatial patterns and statistical values of the pri
mary factors driving ETa variability in NWC. NDVI accounts for 16.6 % 
of the ETa variation in NWC, with its dominant influence mainly 

Fig. 6. The relative contributions of the biological (NDVI) and climatic factors (Pre, RH, Rn, SM,Ta and GWD) to interannual ETa during the study period.
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concentrated in the southeastern region and the oasis areas surrounding 
the Tarim Basin. Climate factors were also significant, with precipitation 
affecting ETa across 1.0 % of the study area, particularly in parts of the 
Junggar Basin, Taklimakan Desert, and small portions of the QTP. 
Relative humidity was the dominant factor in desert and desertified 
areas, covering 33.6 % of the entire region. In high-altitude areas, net 
radiation governed ETa changes over 24.9 % of the region such as the 
Tianshan, Kunlun, Altun, Qilian Mountains and the QTP. Soil moisture 
accounted for 4.0 % of the variation in ETa, exhibiting a heterogeneous 
spatial distribution. Temperature induced ETa changes in only 14.1 % of 
the area, primarily affecting the QTP. Groundwater is also an important 
factor influencing ETa variation in NWC, affecting 5.8 % of the area, 
with its dominant influence primarily concentrated the northwestern 
part of NWC and the central-southern QTP. Overall, climate factors 
accounted for 83.4 % of ETa variations, while vegetation factors (NDVI) 
contributed to 16.6 % of ETa changes.

Fig. 7b shows the contribution of key factors to ETa across various 
vegetation types in NWC. For forestland, NDVI and net radiation were 
the most influential factors, contributing 36.2 % and 43.5 %, respec
tively, while other factors each contributed less than 20 %. In cropland, 
NDVI and net radiation were the primary contributors, accounting for 
58.3 % and 24.7 %, respectively. In grasslands, net radiation, NDVI, 
relative humidity and groundwater were the primary drivers of ETa 
changes, with contributions of 27.1 %, 25.3 %,15.6 % and 14.5 %, 
respectively. For shrublands, temperature was the most influential fac
tor, contributing 29.4 %. And for wetlands, net radiation was the most 
influential factor, contributing 37.7 %. In desert, the main contributing 
factors were relative humidity and net radiation, accounting for 49.9 % 

and 22.1 %, respectively; notably, temperature also played a significant 
role, contributing 18.0 %. Overall, relative humidity, NDVI, and net 
radiation emerged as the primary drivers of ETa variation across most 
vegetation types, while the influence of other factors was relatively 
minor.

3.5. Effects of land cover changes on vegetation dynamics and ETa 
variations

Building on the attribution results in Section 3.4, which identified 
vegetation dynamics (NDVI) as a major driver of ETa variability, this 
section investigates the land cover transitions that underlie long-term 
NDVI trends. By linking land use transitions to ecosystem-level ET re
sponses, we aim to better understand the anthropogenic and natural 
processes behind long-term ETa variability in dryland environments. 
Fig. 8 illustrates the spatial distribution of NDVI trends from 2001 to 
2024 (Fig. 8a), their corresponding significance (p-values; Fig. 8b), as 
well as the correlation coefficients between NDVI and ETa (Fig. 8c) and 
their statistical significance (Fig. 8d). The results show that the majority 
of vegetation-covered areas in NWC experienced a significantly 
increasing NDVI trend with a regional trend of 0.0011 yr− 1 

(Supplementary Fig. S4). This greening trend is particularly prominent 
in ecologically restored zones such as the Loess Plateau, Tianshan 
Mountains, and the oasis regions of southern Xinjiang. These regions 
exhibited statistically significant greening trends (p < 0.05), suggesting 
ongoing ecological improvement and vegetation recovery. Furthermore, 
the spatial distribution of NDVI-ETa correlation coefficients indicates a 
strong positive relationship between vegetation activity and ETa, 

Fig. 7. Distribution of the dominant factors in ETa changes of the region (a) and contribution of the dominant factors influencing evapotranspiration in different land 
cover types (b).
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especially in the eastern and southern parts of the region (Fig. 8c). High 
correlation values (>0.6) are concentrated in areas with active vegeta
tion restoration or irrigation, such as the Loess Plateau and the Tarim 
Basin oases, implying that vegetation dynamics play a substantial role in 
driving ETa changes in these zones. In contrast, desert regions such as the 
Junggar Basin and the central Gobi areas show weak or even negative 
correlations, highlighting the limited coupling between NDVI and ETa in 
sparsely vegetated or water-limited landscapes.

As shown in Fig. 9, a clear relationship exists between the area of 
each land cover type and its corresponding total ETa. Generally, land 
types with larger areas, such as forests and croplands, exhibit higher 
total ETa values due to their widespread distribution and dense vege
tation cover, both of which promote evapotranspiration. Forests and 
croplands not only experienced notable increases in area during the 
study period but also showed significant growth in total ETa, with for
estlands increasing by 4.81 × 106 mm/year and croplands by 
6.62 × 106 mm/year, respectively. This co-evolution suggests that 
vegetation expansion in these land types has directly contributed to 
regional increases in ETa. In contrast, land types with smaller areal 
extent, such as shrublands and wetlands, showed relatively stable trends 
in both area and total ETa, indicating a limited impact on the overall 
spatiotemporal ETa dynamics in NWC. These findings reinforce the 
importance of land use transitions, particularly afforestation and agri
cultural development, in shaping regional water flux patterns.

Table 3 summarizes the land cover changes in NWC between 2001 
and 2024. Over the 24-year period, forestland expanded by 
40,698.0 km2, representing a 54.3 % increase compared to 2001, with 
grasslands and croplands serving as the primary sources of this growth. 
Grasslands area increased by 35,983.3 km2, primarily due to the con
version of desert areas, along with some croplands transitioning to 
grasslands. Meanwhile, cropland area increased by 66,852.3 km2, pre
dominantly through the conversion of grasslands and desert into crop
land. Although there was mutual conversion between grasslands and 
croplands, the net flow favored cropland expansion, indicating an 
overall trend toward agricultural intensification. Additionally, desert 
area experienced the largest reduction, shrinking by 136,277.2 km2, 
most of which was transformed into grasslands. This substantial decline 
highlights the effectiveness of desertification control initiatives, such as 
ecological restoration and vegetation rehabilitation projects. The 
observed land cover transitions reflect both ecological improvement and 

human land use pressures. While programs like the "Grain for Green" 
initiative have contributed positively to forest and grassland recovery, 
the concurrent expansion of cropland—often at the expense of grass
lands—underscores a potential trade-off between agricultural develop
ment and ecological restoration goals.

Fig. 10 shows the spatial distribution of land cover conversions 
across NWC between 2001 and 2024. Land cover changes were pri
marily concentrated in grasslands, croplands, and forestlands. During 
this 24-year period, grasslands and croplands areas exhibited substantial 
expansion, with 50.2 % of current grasslands and 25.0 % of croplands 
converted from other types. The expansion of grasslands and croplands 
was primarily concentrated in ecologically sensitive or restored zones, 
including the Loess Plateau, Turpan-Hami Basin, QTP, Tianshan 
Mountains, and the oases of the Tarim Basin. Additionally, forestlands 
area also increased by 10.7 %, mainly in the Loess Plateau, reflecting the 
impact of large-scale ecological restoration projects. These spatial pat
terns of land conversion were broadly consistent with areas showing 
significant increases in ETa and NDVI, suggesting that land use 
change—particularly afforestation and agricultural expansion—has 
played a key role in driving evapotranspiration dynamics. To better 
capture cropland dynamics, we analyzed cropland-specific changes from 
2001 to 2024 (Supplementary Fig. S5). The results show that 49.1 % of 
cropland (131,318.5 km2) remained unchanged, while 13.0 % 
(34,631 km2) was lost and 38.0 % (101,483.3 km2) represented newly 
added cropland, resulting in a total cropland area of 232,801.8 km2 in 
2024. These changes were mainly concentrated in localized oasis re
gions such as the Hexi Corridor and southern Xinjiang, suggesting that 
although cropland underwent substantial local expansion or realloca
tion, the overall regional extent remained relatively stable.

Fig. 11 illustrates the changes in NDVI and ETa associated with land 
use conversion between 2001 and 2024. As shown in Fig. 11a, average 
NDVI values increased across all land use types that underwent con
version, except for desert areas. The most pronounced increase was 
observed in forestlands, with NDVI rising by 0.1337 (26.9 %). Croplands 
and grasslands also experienced substantial increases of 0.1233 (50.6 %) 
and 0.0556 (38.5 %), respectively. These results indicate that vegetation 
greening accompanied most land cover transitions. Fig. 11b displays the 
corresponding changes in total ETa for these converted areas. Croplands 
exhibited the largest absolute increase in ETa, with a rise of 7.23 × 107 

mm (43.5 %) in 2024 compared to 2001. Moreover, grasslands and 

Fig. 8. Spatial distribution of the interannual trends in NDVI (a) and their statistical significance (b), and the correlation coefficients between NDVI and ETa (c) and 
corresponding significance levels (p-values) (d) from 2001 to 2024.
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forestlands conversions also led to notable ETa increases of 4.46 × 107 

mm (16.9 %) and 3.03 × 107 mm (29.9 %), respectively, suggesting that 
afforestation projects not only enhanced vegetation cover but also 
significantly increased water consumption through evapotranspiration.

4. Discussion

4.1. Performance of the improved model and the variations in ETa

The results indicate that the PT-JPL model effectively simulates ETa 

in arid and semi-arid areas. Compared with the uncalibrated version, 
parameter optimization based on flux tower data significantly improved 
model performance, particularly across typical vegetation types in NWC. 
By integrating the model with flux tower dataset, we optimized key 
sensitivity parameters using ETa observations from different land cover 
types, which improved the simulation accuracy across varied ecosys
tems. Compared to other models (Ershadi et al., 2014; Fisher et al., 
2008), our calibrated PT-JPL framework achieved improved accuracy in 
grassland, shrubland, and desert regions, as evidenced by a relatively 
lower RMSE in these ecosystems. These improvements stem largely from 

Fig. 9. Interannual variation of cumulative annual land cover area (a) and annual ETa (b) for different land types in NWC.

Table 3 
The land cover type transition matrix in Northwest China from 2001 to 2024 (units: km2).

2024 Forestland Shrubland Grassland Wetland Cropland Desert Others Total (2001)

2001

Forestland 72148.8 9.8 2605.5 110.0 19.8 1.0 2.3 74,897.0
Shrubland 38.3 479.0 16234.3 0.0 308.5 736.5 57.0 17853.5
Grassland 35417.0 678.3 1272,110.5 821.0 95,519.8 35,058.0 650.5 1440,255.0
Wetland 490.5 3.8 3112.5 2042.3 95.5 144.5 106.5 5995.5
Cropland 7500.5 68.0 26573.8 50.3 131,318.5 42.0 396.5 165,949.5
Desert 0.0 1766.5 155,409.8 136.0 5518.3 2279,291.5 13,091.0 2455,213.0
Others 0.0 3.8 192.0 78.0 21.5 3662.3 44,133.0 48,090.5
Total (2024) 115,595.0 3009.0 1476,238.3 3237.5 232,801.8 2318,935.8 58,436.8 4208,254.0
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reduced vegetation heterogeneity and more stable environmental con
ditions in these ecosystems, which allow the model’s simplified struc
ture to perform well. In contrast, accuracy was lower for cropland, 
forestland, and wetland areas due to their structural complexity and 

high spatial variability in soil and vegetation characteristics.
To further assess model performance, we compared the PT-JPL ETa 

estimates with two widely used satellite-based ET products—MODIS 
MOD16A2 (Mu et al., 2011) and PML-V2 (Zhang et al., 2019)—using the 
same flux tower observations as reference (Supplementary Figs. S6-S7). 
The PT-JPL dataset showed superior accuracy, with a mean R2 of 0.74 
and RMSE of 0.87 mm/day. PML-V2 yielded moderate agreement (R2 =

0.59, RMSE = 1.05 mm/day), but exhibited larger errors in forest and 
wetland areas. MOD16A2 performed the least reliably (R2 = 0.31, RMSE 
= 1.34 mm/day), with systematic underestimation in sparsely vegetated 
and hydrologically complex regions. These results highlight the advan
tages of the parameter-optimized PT-JPL model in capturing ETa dy
namics across heterogeneous dryland ecosystems.

The spatial distribution of ETa values in our results reveals that the 
northwest and southeast subregions show relatively high ETa values, 
while the central desert zones exhibit lower values, consistent with 
earlier studies (Yang et al., 2022). The PT-JPT model performs partic
ularly well in regions with simpler vegetation structures, though it still 
underestimates ETa where soil evaporation dominates, especially in 
highly heterogeneous cropland and wetland systems. From 2001–2024, 
ETa in NWC exhibited a modest increasing trend of 0.43 mm/year, 
consistent with previous studies (Li et al., 2022). Although the overall 
performance of the PT-JPL model is robust, there remains room for 
further improvements, particularly in better representing soil evapora
tion and complex land cover types. Our findings support the suitability 
of the PT-JPL model, especially when optimized with EC observations, 
for long-term ETa simulation in data-scarce, environmentally complex 
drylands.

Fig. 10. (Top) Spatial distribution of land cover changes in Northwest China from 2001 to 2024. (Bottom) Sankey diagram illustrating the type transitions of land 
cover during the same period.

Fig. 11. Changes in mean NDVI (a) and total annual ETa (b) in areas with land 
use conversion, showing the difference between 2024 and 2001.
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4.2. Statistical attributions of ETa variability to vegetation and 
environmental factors

ET variability in arid regions is influenced by multiple interacting 
drivers, including vegetation dynamics, climatic conditions, and water 
availability (Chen et al., 2018; Yang et al., 2022). In this study, we 
analyzed six major climatic factors, precipitation, relative humidity, net 
radiation, soil moisture, air temperature and groundwater, alongside 
NDVI to identify their relative contributions to ETa in the dryland en
vironments of NWC. Vegetation dynamics, represented by NDVI, is an 
key driver of ETa variation in vegetated zones (Yang et al., 2022; Zheng 
et al., 2022). As illustrated in Fig. 7, vegetation dynamics exhibits strong 
positive partial correlations with ETa in most vegetation-rich areas, 
reflecting the dominant role of transpiration in dryland regions, where a 
significant portion of ETa is derived from vegetation transpiration, while 
soil evaporation constitutes a considerably smaller fraction (Zhang 
et al., 2020).

However, the ridge regression results indicate that climatic drivers 
overall explain a greater proportion (83.38 %) of ETa variability 
compared to vegetation dynamics (16.62 %). Among the climatic fac
tors, relative humidity (33.64 %), net radiation (24.87 %) and temper
ature (14.10 %) are the most influential. This highlights the critical role 
of water availability and energy input in controlling ETa under arid 
conditions. In high-altitude regions such as Qinghai-Tibetan Plateau, net 
radiation and air temperature exert stronger control on ETa due to 
elevation-related energy limitations (Ma et al., 2019). For example, 
increased ETa may lead to enhanced water vapor and local cooling, 
which subsequently suppress radiation (Yu et al., 2022), reinforcing the 
need to consider regional energy-water feedbacks.

Our results also confirm that water-related variables, especially 
groundwater, relative humidity, and soil moisture, are key determinants 
of ETa in arid zones. This aligns with prior findings that relative hu
midity governs ETa variations in water-scarce regions (Chen et al., 2014; 
Li et al., 2021; Yang et al., 2022). This also aligns with the comple
mentary relationship (CR) theory (Brutsaert and Stricker, 1979), which 
suggests that in moisture-limited environments, increases in potential 
evapotranspiration (ETo) may not translate to higher ETa due to low soil 
moisture availability and soil-atmosphere feedbacks (Wang and Zlotnik, 
2012). Our supplementary analysis (Supplementary Fig. S8) confirms 
that ETo trends do not always track ETa in arid ecosystems.

Notably, precipitation had a negligible impact on ETa variation in 
NWC, accounting for only 1.0 %. This may be attributed to the fact that, 
in extremely arid regions, the precipitation contributes little directly to 
ETa, but indirectly affects it via subsurface water. By contrast, ground
water and irrigation provide more stable and sustained sources of 
moisture, particularly for oases and riparian ecosystems (Wang et al., 
2023, 2021). Therefore, in extremely arid areas with limited precipita
tion, water availability from irrigation or atmospheric moisture, rather 
than precipitation, dominates ETa dynamics.

4.3. Land cover change impacts on ETa and implications of afforestation 
and agricultural expansion

While statistical attribution identifies dominant variables, under
standing their ecological and land-use origins requires spatial interpre
tation of vegetation change. Our study demonstrates that areas with 
significantly increasing ETa and NDVI are often associated with land 
cover transitions, particularly afforestation and farmland expansion. In 
regions such as the Loess Plateau, NDVI increased by 0.0010 unit/year, 
coinciding with a 0.43 mm/year increase in ETa. These changes indicate 
enhanced transpiration from newly established vegetation, particularly 
under ecological restoration programs like the “Grain for Green” project 
(Li et al., 2022; Shao et al., 2019).

Additionally, forestland area increased by 40,698.0 km2 (54.3 %) 
from 2001 to 2024, primarily through conversion from croplands and 
grasslands, particularly in the Loess Plateau. While these changes 

enhance vegetation cover (increases of 26.9 % for forests and 38.5 % for 
grasslands), they also contributed to ETa increases of 29.9 % and 16.9 %, 
respectively. This trade-off between ecological restoration and water use 
must be carefully managed (Li et al., 2022). Similarly, cropland 
expansion in the Hexi Corridor and southern Xinjiang has raised water 
demand, contributing to increased ETa and NDVI (Yang et al., 2023). 
Although cropland and grassland expansion enhances vegetation pro
ductivity (Liu et al., 2024), it also intensifies the tension between 
ecological restoration and agriculture water use (Ren et al., 2022), 
especially when grasslands are converted to irrigation-dependent crop
lands. Overall, our findings highlight the dual effects of land greening 
policies: while improving ecological benefits, they elevate regional 
water consumption. This dual effect underscores the need for integrated 
water and land management strategies. Therefore, sustainable devel
opment in NWC requires integrated land-water planning that considers 
both environmental and hydrological trade-offs.

4.4. Uncertainties and limitations

In this study, MODIS remote sensing data and bilinearly interpolated 
GLDAS meteorological data were employed to drive the PT-JPL model. 
While spatial resolution was harmonized to 500 m, the interpolation 
process may have smoothed local climatic variability, potentially 
introducing biases in ETa simulation, particularly in regions with com
plex topography or microclimates. Despite its widespread use and good 
agreement with ground observations across NWC, GLDAS still exhibits 
biases in certain meteorological drivers that may lead to uncertainties in 
ETa simulation, especially in complex or data-scarce regions. In NWC, 
where vegetation is sparse and soil evaporation constitutes a large 
portion of total ET, the PT-JPL model tends to underestimate ETa. This 
bias is likely stems from the model’s simplified treatment of soil evap
oration processes (Cui et al., 2021), which is crucial in arid regions 
dominated by bare soil and low vegetation cover.

Additionally, the use of MODIS land use classification introduces 
uncertainty, given its limited accuracy in heterogeneous landscapes. 
Classification errors may propagate through model parameter assign
ment and affect final ETa estimates. These uncertainties could be 
reduced by incorporating high-resolution or multi-source land cover 
datasets. Flux tower data availability also constrains parameter opti
mization. Sparse site distribution, the footprint representativeness and 
measurement errors of EC observations may introduce uncertainty in 
regional parameter calibration (Hicks and and Baldocchi, 2020). 
Therefore, improving the spatial coverage and data quality of flux tower 
networks, and adopting footprint-aware matching or higher-resolution 
satellite inputs (e.g., Landsat/Sentinel-2) would further enhance 
model reliability.

Moreover, interactions between vegetation dynamics and climate 
variability create attribution challenges (Zhang et al., 2019). Vegetation 
change can influence ETa by modifying canopy interception, transpira
tion rates, and soil evaporation, while climate variability simultaneously 
alters vegetation growth through shifts in temperature, precipitation, 
and radiation (Piao et al., 2019; Zhu et al., 2025). These processes from 
feedback loops: in wet years, enhanced vegetation increases transpira
tion and local cooling, possibly boosting precipitation (Bonan, 2008; Lee 
et al., 2011); In dry years, vegetation decline leads to increased soil 
evaporation and reduced transpiration, amplifying drought 
(Seneviratne et al., 2010). Disentangling these bidirectional influences is 
inherently difficult. We used ridge regression to quantify the contribu
tion of each driver to ETa. Although this method mitigates multi
collinearity, its inherent bias may lead to inaccuracies in estimating the 
true effect of individual factors (Zhao et al., 2023). Further research is 
needed to enhance model structure, improve soil evaporation estima
tion, refine land cover classification and meteorological inputs, and 
employ more robust statistical methods to reduce uncertainties in ETa 
attribution.
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5. Conclusions

This study investigated the spatiotemporal dynamics of ETa in NWC 
from 2001 to 2024 using a PT-JPL model optimized with EC flux ob
servations. By integrating multi-source remote sensing and meteoro
logical data, we mapped long-term ETa trends and quantified the relative 
contributions of vegetation dynamics, climatic variables, and water- 
related variables using ridge regression. Our results highlight that 
water availability (e.g., atmospheric moisture), vegetation dynamics 
and radiation are the dominant climatic and hydrological factors regu
lating ETa variability in fragile dryland ecosystems. Vegetation dy
namics were found to be the primary driver of ETa in densely vegetated 
areas, while water availability (e.g., relative humidity, soil moisture, 
and groundwater) is the most widespread factor affecting ETa changes in 
sparsely vegetated or desert regions. The contribution of radiation to ETa 
is related to elevation. In high-elevation zones such as the Tibetan 
Plateau, temperature exerted a stronger influence on ETa. We also 
observed that land cover transformation, particularly afforestation and 
farmland expansion, significantly contribute to ETa increases by altering 
vegetation cover and water use patterns. This study improves our un
derstanding of the mechanisms driving evapotranspiration in dryland 
environments, offering a scientific basis for future water resource 
management and ecological planning under climate change. Future 
research should further refine ET models in heterogeneous landscapes 
and explore the long-term impacts of projected climate change on 
evapotranspiration to facilitate sustainable water resource management 
in NWC and other drylands globally
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