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ARTICLE INFO ABSTRACT

Handling Editor - X Zhang Evapotranspiration (ET) is a fundamental process linking the energy, water, and carbon cycles in terrestrial
ecosystems. In dryland regions like Northwest China, where water availability strongly constrains ecosystem
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ET estimation mechanisms is critical for ecohydrological assessments under climate change. However, these regions face
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persistent challenges due to sparse vegetation, heterogeneous soils, and limited observations, which impede
accurate regional-scale ET, quantification and attribution analysis. This study investigates the spatiotemporal
patterns and controlling factors of ET, in Northwest China from 2001 to 2024 using the Priestley-Taylor Jet
Propulsion Laboratory (PT-JPL) model optimized with remote sensing and flux observations. The model was
optimized using 16 flux towers, achieving an R? of 0.74 and enabling reliable regional ET, estimation under data-
scarce conditions. The optimized model produced multi-year average ET, of 292.2 mm and an increasing trend of
0.43 mm yr~'. ET, exhibited a clear spatial gradient, higher in the east, lower in the west, corresponding to
vegetation and water availability. Importantly, standardized ridge regression revealed that environmental factors
explained 83.4 % of ET, variability, with relative humidity alone contributing the largest share (33.6 %).
Vegetation dynamics accounted for 16.6 %, primarily associated with farmland expansion and afforestation. This
findings offer a robust framework for disentangling ET, drivers in data-scarce drylands and underscore the
dominant role of both atmospheric humidity and land cover change in shaping regional evapotranspiration
patterns. This study delivers valuable insights for sustainable water and land resource management under
climate change.

1. Introduction atmosphere through ET (Jasechko et al., 2013), and rising ET rates
driven by climate change are exacerbating hydrological extremes (Oki

Evapotranspiration (ET) plays a fundamental role in linking terres- and Kanae, 2006). In dryland regions, ET is influenced by complex in-
trial energy, water, and carbon cycles (Fisher et al., 2008; Li et al., teractions among climate, vegetation, and water availability, particu-

2023). Globally, more than 60 % of precipitation returns to the larly soil moisture and groundwater (Wang et al., 2023, 2021). Land use
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and land cover changes caused by human activities further reshape ET
patterns by altering vegetation structure and surface properties (Wang
etal., 2014; Li et al., 2016). These shifts have important implications for
ecosystem functions, hydrological processes, and water resource sus-
tainability. Given that ET serves as a key exchange flux between
terrestrial ecosystems and the atmosphere (Zhao et al., 2020), accurately
monitoring its dynamics and identifying dominant driving factors is
essential for understanding ecohydrological feedbacks under climate
change. ET primarily comprises soil evaporation and vegetation tran-
spiration, which respond differently to environmental drivers. While soil
evaporation is regulated by surface and atmospheric conditions, vege-
tation transpiration is mainly related to the growth status of vegetation,
soil water availability, and environmental conditions (Hu et al., 2024;
Wang et al., 2021). Consequently, ET spatiotemporal variability is
jointly driven by air temperature, humidity, precipitation, radiation,
vegetation activity, and water availability (Hu et al., 2024; Li et al.,,
2022; Ma and Zhang, 2022). Dryland regions—accounting for over 40 %
of the global land surface—are especially vulnerable to climate extremes
and human disturbance (Wang et al., 2023, 2019b). Northwest China
(NWQ) is a representative dryland region facing persistent water scar-
city, high potential ET, and fragile ecological conditions (Wang et al.,
2021, 2019a). Although previous studies have examined ET patterns and
their drivers across multiple spatial scales (Liu et al., 2021; Ma and
Zhang, 2022; Niu et al., 2019; Yang et al., 2022; Zhao et al., 2023), most
assessments rely on coarse-resolution data or general regression models.
As a result, the relative contributions of climatic, biological, and sub-
surface hydrological factors to ET variability in data-scarce drylands
remain insufficiently quantified. This knowledge gap limits the ability to
support water resource planning under climate change.

Although numerous remote sensing products are available at various
spatiotemporal resolutions, significant uncertainties persist between
different datasets, with potential discrepancies reaching up to 30 % (Zou
et al., 2017). As research on ET continues to grow, a wide range of
remote sensing-based models have been developed to address these
challenges (Bastiaanssen et al., 1998; Mu et al., 2011; Zhang et al.,
2019). These include energy balance-based models such as METRIC
(Allen et al., 2007), SEBAL (Bastiaanssen et al., 1998) and TSEB (Kustas
and Norman, 1999), as well as physical or semi-empirical models like
MOD16 (Mu et al., 2011) and PML (Zhang et al., 2019). Energy balance
models rely on high-resolution thermal data and are well-suited for
field- to watershed-scale applications; however, they may face limita-
tions in large-scale, long-term monitoring due to data availability and
computational complexity. In contrast, models such as MOD16 and PML
provide physically based yet operationally efficient alternatives that are
particularly useful for regional- to global-scale ET estimation. Never-
theless, these products often lack sufficient validation in arid ecosystems
due to sparse flux tower coverage, leading to considerable uncertainties
when applied in drylands such as NWC. Among various models, the
Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model (Fisher et al.,
2008) stands out by addressing the limitations of the Penman-Monteith
(PM) model, particularly the uncertainty related to canopy and aero-
dynamic resistance. Its minimal parameterization requirements and
compatibility with satellite-derived inputs make it especially suitable for
data-scarce, heterogeneous dryland regions (Li et al., 2022). Further-
more, the availability of cloud-based platforms such as Google Earth
Engine (GEE) greatly facilitates the implementation of large-scale ET
modeling and analysis.

Although ET models including PT-JPL have been widely used, the
simulated ET may exhibit significant instability due to uncertainties in
model structure, input data, and parameters (Wang et al., 2019a). In-situ
ET flux observations, particularly from eddy covariance (EC) towers,
provide a valuable basis for model calibration and have been widely
utilized to optimize parameters (Niu et al., 2020; Zhang et al., 2017).
Among optimization techniques, the Markov chain Monte Carlo
(MCMC) approach is commonly employed to quantify model uncer-
tainty and optimize parameters (Zhu et al., 2014; Wang et al., 2019a),
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though it often suffers from slow convergence (Haario et al., 2006). To
address these issues, we adopted the Differential Evolution Markov
Chain (DE-MC) algorithm, which integrates global optimization capa-
bilities of differential evolution and is better suited for high-dimensional
parameter calibration (Braak, 2006). This enabled land cover-specific
parameter optimization of the PT-JPL model across six typical
ecosystem types in NWC.

While ET drivers have been extensively studied at local and global
scales, few studies have conducted regionally calibrated and
observation-constrained assessments that integrate vegetation, climate,
and groundwater influences in arid zones. Traditional multiple regres-
sion methods are often limited by multicollinearity (Li et al., 2022; Yang
et al., 2022), whereas ridge regression has been shown to effectively
isolate the relative effects of vegetation and climatic variables on ETa
(Katul et al., 2012; Zhao et al., 2023). This is especially important in
heterogeneous dryland environments, where the interplay between
vegetation dynamics, subsurface water availability, and meteorological
forcing remains poorly understood.

In this study, we optimized the PT-JPL model with remote sensing
and EC data and then used the optimized model to quantify ET, dy-
namics in NWC from 2001 to 2024. Specifically, we aimed: (1) to
investigate the spatiotemporal patterns of ET, based on land cover-
specific model calibration; (2) to assess the relative contributions of
vegetation dynamics, climatic variables, and water availability using
partial correlation and ridge regression; and (3) to explore how land use
change modulates ET, patterns. This framework provides an improved
basis for understanding water cycle dynamics and informing water re-
sources management strategies in dryland regions.

2. Materials and methods
2.1. Study area

Northwestern China, located in the interior of Eurasia, encompasses
the provinces or autonomous regions of Ningxia, Xinjiang, Gansu,
Qinghai, and Shaanxi, along with the western portion of Inner Mongolia
(i.e., Alxa League), covering an area of approximately 3.53 million km?.
The region’s terrain is complex, dominated by a mix of plateaus,
mountains, and basins (Fig. 1). Major mountain ranges, including the
Qinling, Qilian, Tianshan and Kunlun Mountains, among others, not
only provide the topographical backbone of the region but also crucial
water sources for oasis agriculture (Chen et al., 2015). Key geographical
units, such as the Qinghai-Tibet Plateau (QTP), Tarim Basin, Junggar
Basin, Taklamakan Desert, Hexi Corridor, Loess Plateau, and Qaidam
Basin, are characterized by towering mountains and expansive basins
(Wang et al., 2020).

The region experiences a mix of temperate continental and alpine
climates, with some areas influenced by a temperate monsoon climate in
the southeast. This diverse climatic pattern (Yang et al., 2022), along
with high temperature variability (average annual temperature of
approximately 4.5°C, with extremes ranging from —30°C and 40°C), is
reflected in its fragile and sensitive ecosystems (Katul et al., 2012; Shi
et al., 2007). Precipitation is extremely low, with one-third of the region
receiving less than 50 mm annually. The region’s precipitation gradient
varies from 200 mm to 800 mm depending on the elevation and prox-
imity to mountains, with higher amounts concentrated in the south-
eastern regions (Chi et al., 2023; Liang et al., 2023). The diverse climatic
conditions and the fragile ecosystem in this region play a crucial role in
shaping the region’s water balance and ET dynamics.

2.2. Eddy covariance data processing and quality control

The eddy covariance (EC) technique is a well-established method for
measuring ET and validating ET estimation models (Lin et al., 2024;
Wang et al., 2021). Through continuously measuring high-frequency
water vapor exchange at the ecosystem scale, EC observations can
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Fig. 1. Study area of Northwest China, and the eddy covariance (EC) flux sites, along with the elevation and land cover type distributions. Additional information on

the EC sites is presented in Table 1.

directly capture the temporal dynamics of ET. EC flux observations have
been extensively utilized to investigate the variations of ET at regional
scales widely (Wang et al., 2021). In this study, we selected a total of 16
flux tower sites in NWC and neighboring areas to validate the model.
These sites represent diverse dryland ecosystem types across NWC. The
EC flux tower data were collected from the ChinaFLUX (Yu et al., 2006,
2016), the HIWATER datasets in the Heihe River Basin (HRB) (Liu et al.,
2023; 2018), the dataset of Coordinated Observations and Integrated
Research over Arid and Semi-arid China (COIRAS) (Wang et al., 2013a).
Detailed metadata and references for each site are listed in Table 1.

The flux data were measured by an open-path EC system (i.e., CSAT-
3, Campbell Sci. Ins. Inc., USA; and Li-7500A, Li-Cor Inc., USA), which
were underwent standardized and rigorous quality control and correc-
tion procedures. These included spike detection, sonic temperature
correction, coordinate rotation, frequency response correction, and WPL
correction (Webb et al., 1980; Yu et al., 2006; Liu et al., 2018; Wang
et al.,, 2019b; Wang et al., 2013b). The raw 10 Hz EC data were pro-
cessed into half-hourly fluxes a with data quality flags according to the
stationary test (Allen et al., 2011; Foken et al., 2004; Liu et al., 2018).
Based on site-specific publications and our calculations for the study
period, average EBR values across all sites ranged from 0.71 to 0.95
(overall mean 0.84; Table S1), exceeding the commonly accepted
threshold (=0.7). Thus, the EC datasets are considered robust for model
evaluation. Further details on the data processing and site-specific fetch
characteristics for these sites can be found in the original site docu-
mentation referenced in Table 1.

2.3. Other data sources and processing

In this study, we utilize various remote sensing derived data and
meteorological datasets to run the model. At the site scale, meteoro-
logical data such as net radiation, relative humidity, and air temperature
were derived from tower-based observational data. The processing
procedures of the meteorological data for each site was described in the
corresponding references in the Table 1.

The NDVI and Enhanced Vegetation Index (EVI) data were extracted
from the MOD13A1l V6.1 dataset of MODIS (https://modis.gsfc.nasa.
gov/), with a spatial resolution of 500 meters and temporal resolution

Table 1
The location, duration, vegetation type, and reference for the 16 EC sites used in
this study.

Name Lon Lat Time span Type Reference
CN) (°E)
A’rou 100.46 38.05 2013-2018  Grassland (Liu et al.,
2023, 2018)
Haibei 101.31 37.61 2015-2020 Grassland (Zhang et al.,
grassland 2023b)
Maqu 102.15 33.86 2014-2019 Grassland (Meng et al.,
2023)
Changwu 107.68 35.23 2008-2009  Cropland ( Wang et al.,
2013b)
Daman 100.37 38.86 2013-2017 Cropland (Liu et al.,
2023, 2018)
Linze 100.13 39.35 2012-2015  Cropland (Jietal., 2023)
Yingke 100.42 38.85 2008-2009  Cropland (Liu et al.,
2023, 2018)
Dangxiong 91.08 30.85 2004-2010  Forestland  (Chai et al.,
2021)
Hunhelin 101.13 41.99 2015-2020 Forestland (Liu et al.,
2023, 2018)
Haibei 101.33 37.67 2011-2020  Shrubland (Zhang et al.,
shrubland 2023a)
Yanchi 107.23 37.71 2012-2016 Shrubland (Han et al.,
2023)
Huazhaizi 100.32 38.77 2013-2017 Desert (Liu et al.,
2023, 2018)
Shenshawo 100.49 38.79 2012-2014 Desert (Liu et al.,
2023, 2018)
Fukang 87.93 44.28 2009 Desert (Liu et al.,
2012)
Haibei 101.32 37.60 2004-2009 Wetland (Zhang et al.,
wetland 2021)
Zhangye 100.45 38.98 2013-2017  Wetland (Liu et al.,
wetland 2023, 2018)

of 16 days. The land cover type data for Northwestern China from 2001
to 2024 were obtained from the MODIS MCD12Q1 V6.1 product
(https://modis.gsfc.nasa.gov/), which is based on the Annual Interna-
tional Geosphere-Biosphere Programme (IGBP) classification with a
spatial resolution of 500 m. The land cover types were then reclassified
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into broad categories including forestland, shrubland, grassland,
wetland, cropland, desert and others for the ET simulation process.

At the regional scale, meteorological forcing was obtained from the
NASA Global Land Data Assimilation System V2.1 (GLDAS-2.1) rean-
alysis datasets at 3-hourly resolution. We synthesized relevant meteo-
rological variables such as precipitation, relative humidity, net solar
radiation, soil moisture, and air temperature to daily values and then
complied into 8-day composites for the model runs. All variables were
resampled to match with spatial resolution of the MODIS products
(500 m) using bilinear interpolation. Data processing and model
execution were performed on the GEE platform. GLDAS-2.1 driver data
showed strong agreement with flux tower meteorological observations
in this study (Supplementary Fig. S1), supporting its reliability as input
for regional-scale modeling in NWC. For groundwater depth (GWD)
data, we used the GWD data derived from the long-term observational
data of China Geological Environment Monitoring Groundwater Level
Yearbook (2005-2022) developed by Wang et al. (2025). We extracted
annual GWD composites for NWC from 2005 to 2022 and resampled
them to 500 m spatial resolution using bilinear interpolation.

2.4. The ET model and parameter optimization

The Priestley-Taylor model was first proposed in 1972 for the esti-
mation of potential evapotranspiration, and its theory and accuracy
have been validated (Priestley and Taylor, 1972). The general form is as
follows:

A
LE:aAJr}/(R,[—G) 6]
Fisher et al. (2008) developed the Priestly-Taylor Jet Propulsion
Laboratory (PT-JPL) model, which integrates remotely sensed data and
directly calculates the actual ET (ET,). The model separates the final
evapotranspiration into three parts: transpiration from plant canopy
(LE,), soil evaporation (LE;), as well as interception evaporation (LE;).
The specific equations of the PT-JPL model are provided in Table 2.
where fy.¢ is the relative surface moisture limitation factor; fg, is
the soil moisture limitation factor; f;, f; and f, are the limitation factor of
green canopy, temperature, and moisture, respectively. R, refers to the
net radiation; R, and R, represent the portion of net radiation absorbed
by the vegetation canopy and the soil surface, respectively; G corre-
sponds to the soil heat flux; a denotes the Priestley-Taylor coefficient
(set to 1.26); y stands the psychrometric constant; and A denotes the
gradient of the saturation vapor pressure curve.

In Bayesian theory, the posterior probability density function (PDF)
for the model parameters (0), conditioned on the observations (O) (i.e.,
p(0]0)) is determined using prior knowledge about the parameters and
the information obtained from model validations. This relationship is
formulated as follows (Wang et al., 2019a):

p(9)p(016)

p(0|0) = T p0) (2)

where p(d) and p(O) denote the prior probability distribution of pa-
rameters and posterior probability distribution of observations, respec-
tively, while p(O|0) represents the conditional probability density of ET
observations based on prior information. For a dataset containing N
observations, p(6) can be defined as (Zhu et al., 2014):

(Obs;—Sim;)?

1 (Obs;—Sim;)”
pO = [, =e = ®)

i=1 216

Here, Obs; denotes the i-th observation in a set of N data points; Sim;
represents the i-th of N simulation data (Braswell et al., 2005). The term
o is given as:

o= \/ I%Z”: (Obs; — Sim;)? @
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Table 2
Key Parameters and Equations of the PT-JPL Model for ET Estimation.
Parameter  Description Equation Reference
LE, Latent heat flux LE. + LE; + LE; (Fisher
et al.,
2008)

LE, Transpiration A (Fisher
from plant (1= fuedfefifmx ER"C et al.,
canopy 2008;

Priestley
and Taylor,
1972)
LE; Soil evaporation (Fuet +fom (1 —Foee) )(IA i - (Rus —G) Sl;]lnr

2008;
Priestley
and Taylor,
1972)

LE; Interception A (Fisher
evapor:tion frat T-HR"C et al.,

2008)

Swet Relative surface RH* (Fisher
moisture et al.,
limitation factor 2008)

fom Soil moisture RH"PP/E (Fisher
limitation factor etal.,

2008)

fe Limitation fapar/fipar (Fisher
factor of green etal.,
canopy 2008)

f Limitation e ((Ta=Top) Tp)? (Niu et al.,
factor of 2019)
temperature

fm Limitation fapar /fapARmax (Fisher
factor of et al.,
moisture 2008)

Rne Net radiation to Rn — Ry (Beer,
the vegetation 1852;

Denmead
and Millar,
1976)
Rys Net radiation to Rpexp ( — kgraLAI) (Beer,
the soil 1852;
Denmead
and Millar,
1976)
fapar Fraction of mEVI + by (Fisher
photosynthesis et al.,
active radiation 2008; Gao,
2000;
Huete
et al.,
2002)
fipar Fraction of PAR myNDVI + b, (Fisher
absorbed by the etal.,
canopy 2008; Gao,
2000;
Huete
et al.,
2002)

By integrating the PT-JPL model with the EC flux tower based ET
observations, we applied the DE-MC algorithm in optimizing the
model’s sensitive parameters: m1, bl and f in the model. The DE-MC
algorithm, based on swarm intelligence, incorporates features of the
differential evolution algorithm and the MCMC method (Braak, 2006).
In this approach, N chains are run simultaneously, and proposals are
generated using two randomly selected chains. This method helps to
reduce the prior uncertainty of sensitive parameters and enhances the
model’s accuracy. To improve regional parameter generalization, we
classified the 16 flux tower sites into six dominant vegetation types
based on MODIS land cover data (MCD12Q1 V6.1), and optimized
PT-JPL parameters separately for each type. The resulting parameter
sets were then applied spatially according to land cover distribution.
Model optimization was evaluated using the Nash-Sutcliffe Efficiency
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(NSE), a robust, dimensionless indicator commonly used in ecohydro-
logical modeling.

2.5. Statistical analysis

2.5.1. ET trend analysis

To evaluate the annual variation trends of the optimized ET simu-
lations in the Northwest Territories from 2001 to 2024, a linear
regression model was applied based on the least squares approach. The
ET trend, i.e., the slope of the linear model (6p) Was calculated using
the following formula (Luo et al., 2018; Ren et al., 2022):

6. — ny LT — YL iy BTy
slope — no n N2
ny i = (1)

(5)

where n is the number of years in the ET time series; and ET; refers to the
annual cumulated ET for the i-th year. A positive value of 0, refers to
an upward trend in ET over the study period. Conversely, a negative 0
suggests a decrease in ET during the study period. Additionally, 6 = zero
implies no change in ET. The T-test was utilized to evaluate the signif-
icance of the ET trend over time.

2.5.2. Partial correlation analysis

We employed partial correlation analysis to examine the relationship
between ET and various influencing factors. This technique allows us to
assess the impact of each variable while keeping the others constant. We
analyzed how ET relates to each specific variable, considering the other
five variables as controls. The detailed formula for Ry, (;), which denotes
the partial correlation coefficient between variables x and y while ac-
counting for the effect of z(i), is provided below (Gu et al., 2018; Liu
et al., 2024; Marrelec et al., 2006):
_ Ry = Rusi) @ Ry ©

\/(1 ~Ra)?) © (1-Ryup”)

In this equation, R,, Ry), and Ry, indicate the correlation co-
efficients between x, y, and z(i), respectively.

Ry, =)

2.5.3. Relative contributions of the controlling factors

In dryland regions, ET is governed not only by atmospheric demand
but also by the availability of water. Therefore, both energy-related and
moisture-related variables were included to better represent the eco-
hydrological constraints on ET dynamics. We utilized standardized ridge
regression to investigate the contributions of various factors to ET dy-
namics. Prior to analysis, both ET and the environment factors were
standardized to remove the influence of unit variations on the regression
coefficients. Ridge regression analysis was used to assess the effects of
each biological and climatic factor on ET, utilizing the flowing formula:

X = [NDVI, Pre, RH, Rn,SM',Td,GW] @)

b= (X"X + A)'X"ET 8

ET’, NDVI’, Pre’, RH’, Rn’, SM’, Ta’ and GW’ are the standardized
values of ET, NDVI, precipitation, relative humidity, net solar radiation,
soil moisture, temperature and groundwater respectively. X is the in-
dependent variable matrix, and b refers to the standardized ridge
regression coefficient. A and I denote the regularization parameter and
the identity matrix, respectively.

We calculated the relative contributions of these factors to ET vari-
ation by using ridge regression coefficients along with the standardized
trends of each factor to determine the influence of different climatic
elements on ET dynamics:

n = bie Xi trend 9

Agricultural Water Management 321 (2025) 109941

C = "h| 10)
[l =+ 2] + [ns| + 14l + [ns| + 116] + [n7]

where X; yenq is the normalized trend of independent variable, C; denotes
the relative contribution of the i-th factor (where i = 1-7) to ET vari-
ability. This calculation allows us to identify the relative importance of
each factor in driving ET changes. A larger C; value indicates a greater
influence of that specific factor on ET fluctuations.

2.5.4. Statistical evaluations

We evaluated the model’s accuracy by comparing its predicted ET,
with observations from flux towers using a suite of commonly applied
statistical metrics. These indicators were selected to assess model effi-
ciency and quantify prediction error, which include: (1) Goodness-of-fit
and model efficiency indicators: the coefficient of determination (R?)
and the Nash-Sutcliffe Efficiency (NSE); (2) Error-based performance
metrics: Root Mean Square Error (RMSE), Mean Bias Error (MBE), Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
Mean Bias Percentage Error (MBPE). The formulas and definitions of
these evaluation metrics are provided in Supplementary Materials (Text
S1). These metrics together offer a comprehensive evaluation of model
accuracy and robustness across diverse environmental conditions.

3. Results
3.1. Validation of the optimized ET, model

Fig. 2 displays the validation outcomes of the 8-day average ET,
values simulated by the PT-JPL model, both before and after parameters
optimization, compared to the observed ET, data. In general, the PT-JPL
showed a reliable performance using the default parameter settings.
However, the overall performance of the model showed significant
improved performances after model optimization. The R? and NSE
increased from 0.68 to 0.74 (an increase of 8.8 %) and 0.62-0.68 (an
increase of 9.7 %), respectively, while the RMSE, MAE, and MBE
decreased from 0.95 to 0.87 mm/day (a decrease of 8.4 %),
0.62-0.53 mm/day (a decrease of 14.5 %), and —0.34 to —0.37 mm/
day, respectively. Since MBE is a signed metric, although its absolute
value slightly increased after optimization, the overall bias remained
within an acceptable range. Overall, the MAPE and MBPE across all sites
are 14.4 % and —10.1 %, respectively.

Furthermore, site-specific validation across different vegetation
types (Supplementary Fig. S2) confirmed the robustness of the opti-
mized model. The highest simulation accuracy was observed in grass-
land (R? = 0.87; NSE = 0.84), followed by shrubland, forestland, and
desert ecosystems, which also exhibited low RMSE and MBE values. In
contrast, performance in wetland areas was relatively weaker, with
wetland showing the lowest R? (0.61) and the highest RMSE (1.59 mm/
day). These results suggest that the optimized PT-JPL model performs
best in ecosystems with simpler vegetation structures and more stable
surface conditions.

3.2. Spatiotemporal variations of ET,

Fig. 3 illustrates the annual and seasonal variations in ET, across
NWC from 2001 to 2024. During this period, the annual average ET,
showed a slight increasing trend, with a rate of 0.43 mm/year and a
determination coefficient (Rz) of 0.32. Specifically, ET, increased from
297.5 mm in 2001-330.6 mm in 2024, representing a total growth of
11.1 % over the 24-year span. Seasonal patterns of ET, demonstrated
noticeable differences. In summer, ET, showed an increasing trend of
0.78 mm/year, with a mean value of 146.6 mm over the study period. In
winter, ET, also increased, albeit more modestly, at a rate of 0.01 mm/
year, with a mean of approximately 1 mm. Conversely, spring ET,
exhibited a slight decreasing trend of 0.22 mm/year, with a mean value
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Fig. 2. Scatterplots between observed ET, (mm/day) and simulated ET, with all flux site data by PT-JPL before and after optimization. The black lines represent the
1:1 lines, while the red lines indicate the linear regression results. The units for RMSE, MAE, and MBE were mm/day.
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Fig. 3. The temporal variations of spatially averaged annual and seasonal ET, in Northwest China from 2001 to 2024.

decreasing trends in spring and autumn.

Fig. 4 illustrates the spatial distribution of the multi-year average ET,
and its long-term trend across NWC from 2001 to 2024. During this
period, the annual average ET, ranged from O to 843.4 mm, with a

of 83.5 mm. Similarly, in autumn, ET, decreased at a rate of 0.13 mm/
year, with an average of 44.9 mm. These findings indicate that while the
overall ET, in the region experienced a gradual upward trend, the sea-
sonal dynamics varied, with increasing trends in summer and winter and
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Fig. 4. Spatial distribution of the multi-year average ET, (a) and its trend (b) from the PT-JPL model in NWC.
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regional multi-year mean of 292.2 mm. ET, shows a distinct east-west
gradient, with higher values in the eastern regions and lower values in
the west. The majority of the areas experienced no significant change in
ET,. Specifically, only 13.9 % of the regions exhibited a highly signifi-
cant increase in ET,, 9.2 % showed a slight increase, 26.2 % showed no
significant change, and 50.7 % experienced a decrease in ET, values,
with 20.1 % and 7.9 % showing highly significant and slightly signifi-
cant decreases, respectively. The spatial distribution of ET, trends
revealed notable regional heterogeneity. Significant increases in annual
ET, (p < 0.01) were mainly concentrated in ecologically restored and
vegetated zones of the southeastern region such as parts of the Loess
Plateau, as well as in oasis zones surrounding desert margins in the
northwestern region. In contrast, the central and western arid zones,
particularly those with sparse vegetation or shifting land cover,
exhibited minimal or slightly declining ET, trends. These patterns un-
derscore the combined effects of ecological restoration, land use change,
and climatic variability on ET, dynamics across dryland environments.

Agricultural Water Management 321 (2025) 109941

Seasonal comparisons of ET, (Supplementary Fig. S3) indicate that
evapotranspiration from annual vegetation is predominantly concen-
trated in spring and summer, with minimal ET, observed during autumn
and winter.

3.3. Impacts of vegetation dynamics and climate factors on ET, dynamics

Fig. 5 presents the spatial patterns of partial correlation coefficients
between ET, and seven driving factors. NDVI shows a strong positive
partial correlation with ET, in 97.6 % of vegetated areas, with negative
coefficients (2.4 %) primarily on the Tibetan Plateau (Fig. 5a). Precipi-
tation exhibits a predominantly positive correlation (64.6 %), with weak
negative zones (35.4 %) in the central and eastern part of NWC (Fig. 5b).
Relative humidity positive correlates with ET, in 99.3 % of the region,
particularly in arid zones, while negative effects are limited to eastern
part of NWC (Fig. 5¢). Net radiation shows the highest consistency, with
99.9 % of the region exhibiting strong positive correlation (Fig. 5d). Soil
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Fig. 5. Partial correlation coefficients between each factor and interannual ET, during the study period, with statistically significant at p < 0.05.
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moisture has a mixed impact, with 70.4 % positive and 29.6 % negative
correlations, distributed irregularly (Fig. Se). Air temperature positively
affects 77.9 % of the region, mainly in highlands, while 22.1 % shows
negative correlation, especially in central deserts (Fig. 5f). Groundwater
shows a strong positive influence in 80.9 % of the region, especially in
the oases of the Tarim Basin and the southern QTP (Fig. 5g).

3.4. Contributions of environmental factors and vegetation dynamics to
ET, variability

We assessed the relative influences of vegetation dynamics and cli-
matic factors on ET, variability in NWC by using the ridge regression
(Fig. 6). Overall, both sets of factors significantly impacted ET, changes,
with NDVI playing a dominant role in most of the vegetation zones in
NWC, including the Qinling region, the Loess Plateau, the Tianshan re-
gion, the Circum-Taklamakan Desert oasis zone, and parts of the Tibetan
Plateau. In contrast, precipitation had a significantly weaker influence,

Agricultural Water Management 321 (2025) 109941

playing the dominant role only in the Jungar Basin and small parts of the
Tibetan Plateau. In the north-central section of the region, which in-
cludes numerous deserts, relative humidity emerged as the primary
factor, suggesting that humidity plays a vital role in influencing ET,
within hyper-arid zones. In northwestern China, the dominant role of
net radiation was correlated with altitude, being particularly influential
in the Tien Shan Mountains, the Kunlun Mountains, the Altun Moun-
tains, the Qilian Mountains, and much of the Tibetan Plateau. Similarly,
the contribution of air temperature to ET, variation is associated with
elevation. Fig. 6f illustrates that air temperature has a relatively higher
contribution in the Tibetan Plateau, while its impact is less significant in
low-elevation areas. In the northwestern part of NWC and the central-
southern QTP, the changes in groundwater contribute significantly to
the variation in ET (Fig. 6g).

Fig. 7a depicts the spatial patterns and statistical values of the pri-
mary factors driving ET, variability in NWC. NDVI accounts for 16.6 %
of the ETa variation in NWC, with its dominant influence mainly
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6. The relative contributions of the biological (NDVI) and climatic factors (Pre, RH, Rn, SM,Ta and GWD) to interannual ET, during the study period.
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Fig. 7. Distribution of the dominant factors in ETa changes of the region (a) and contribution of the dominant factors influencing evapotranspiration in different land

cover types (b).

concentrated in the southeastern region and the oasis areas surrounding
the Tarim Basin. Climate factors were also significant, with precipitation
affecting ET, across 1.0 % of the study area, particularly in parts of the
Junggar Basin, Taklimakan Desert, and small portions of the QTP.
Relative humidity was the dominant factor in desert and desertified
areas, covering 33.6 % of the entire region. In high-altitude areas, net
radiation governed ET, changes over 24.9 % of the region such as the
Tianshan, Kunlun, Altun, Qilian Mountains and the QTP. Soil moisture
accounted for 4.0 % of the variation in ET,, exhibiting a heterogeneous
spatial distribution. Temperature induced ET, changes in only 14.1 % of
the area, primarily affecting the QTP. Groundwater is also an important
factor influencing ET, variation in NWC, affecting 5.8 % of the area,
with its dominant influence primarily concentrated the northwestern
part of NWC and the central-southern QTP. Overall, climate factors
accounted for 83.4 % of ET, variations, while vegetation factors (NDVI)
contributed to 16.6 % of ET, changes.

Fig. 7b shows the contribution of key factors to ET, across various
vegetation types in NWC. For forestland, NDVI and net radiation were
the most influential factors, contributing 36.2 % and 43.5 %, respec-
tively, while other factors each contributed less than 20 %. In cropland,
NDVI and net radiation were the primary contributors, accounting for
58.3 % and 24.7 %, respectively. In grasslands, net radiation, NDVI,
relative humidity and groundwater were the primary drivers of ET,
changes, with contributions of 27.1 %, 25.3 %,15.6 % and 14.5 %,
respectively. For shrublands, temperature was the most influential fac-
tor, contributing 29.4 %. And for wetlands, net radiation was the most
influential factor, contributing 37.7 %. In desert, the main contributing
factors were relative humidity and net radiation, accounting for 49.9 %

and 22.1 %, respectively; notably, temperature also played a significant
role, contributing 18.0 %. Overall, relative humidity, NDVI, and net
radiation emerged as the primary drivers of ET, variation across most
vegetation types, while the influence of other factors was relatively
minor.

3.5. Effects of land cover changes on vegetation dynamics and ET,
variations

Building on the attribution results in Section 3.4, which identified
vegetation dynamics (NDVI) as a major driver of ET, variability, this
section investigates the land cover transitions that underlie long-term
NDVI trends. By linking land use transitions to ecosystem-level ET re-
sponses, we aim to better understand the anthropogenic and natural
processes behind long-term ET, variability in dryland environments.
Fig. 8 illustrates the spatial distribution of NDVI trends from 2001 to
2024 (Fig. 8a), their corresponding significance (p-values; Fig. 8b), as
well as the correlation coefficients between NDVI and ET, (Fig. 8c) and
their statistical significance (Fig. 8d). The results show that the majority
of vegetation-covered areas in NWC experienced a significantly
increasing NDVI trend with a regional trend of 0.0011yr!
(Supplementary Fig. S4). This greening trend is particularly prominent
in ecologically restored zones such as the Loess Plateau, Tianshan
Mountains, and the oasis regions of southern Xinjiang. These regions
exhibited statistically significant greening trends (p < 0.05), suggesting
ongoing ecological improvement and vegetation recovery. Furthermore,
the spatial distribution of NDVI-ET, correlation coefficients indicates a
strong positive relationship between vegetation activity and ET,,
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Fig. 8. Spatial distribution of the interannual trends in NDVI (a) and their statistical significance (b), and the correlation coefficients between NDVI and ETa (c) and

corresponding significance levels (p-values) (d) from 2001 to 2024.

especially in the eastern and southern parts of the region (Fig. 8c). High
correlation values (>0.6) are concentrated in areas with active vegeta-
tion restoration or irrigation, such as the Loess Plateau and the Tarim
Basin oases, implying that vegetation dynamics play a substantial role in
driving ET, changes in these zones. In contrast, desert regions such as the
Junggar Basin and the central Gobi areas show weak or even negative
correlations, highlighting the limited coupling between NDVI and ET, in
sparsely vegetated or water-limited landscapes.

As shown in Fig. 9, a clear relationship exists between the area of
each land cover type and its corresponding total ET,. Generally, land
types with larger areas, such as forests and croplands, exhibit higher
total ET, values due to their widespread distribution and dense vege-
tation cover, both of which promote evapotranspiration. Forests and
croplands not only experienced notable increases in area during the
study period but also showed significant growth in total ET,, with for-
estlands increasing by 4.81 x 10° mm/year and croplands by
6.62 x 10° mm/year, respectively. This co-evolution suggests that
vegetation expansion in these land types has directly contributed to
regional increases in ET,. In contrast, land types with smaller areal
extent, such as shrublands and wetlands, showed relatively stable trends
in both area and total ET,, indicating a limited impact on the overall
spatiotemporal ET, dynamics in NWC. These findings reinforce the
importance of land use transitions, particularly afforestation and agri-
cultural development, in shaping regional water flux patterns.

Table 3 summarizes the land cover changes in NWC between 2001
and 2024. Over the 24-year period, forestland expanded by
40,698.0 km?, representing a 54.3 % increase compared to 2001, with
grasslands and croplands serving as the primary sources of this growth.
Grasslands area increased by 35,983.3 km?, primarily due to the con-
version of desert areas, along with some croplands transitioning to
grasslands. Meanwhile, cropland area increased by 66,852.3 km?, pre-
dominantly through the conversion of grasslands and desert into crop-
land. Although there was mutual conversion between grasslands and
croplands, the net flow favored cropland expansion, indicating an
overall trend toward agricultural intensification. Additionally, desert
area experienced the largest reduction, shrinking by 136,277.2 km?,
most of which was transformed into grasslands. This substantial decline
highlights the effectiveness of desertification control initiatives, such as
ecological restoration and vegetation rehabilitation projects. The
observed land cover transitions reflect both ecological improvement and

human land use pressures. While programs like the "Grain for Green"
initiative have contributed positively to forest and grassland recovery,
the concurrent expansion of cropland—often at the expense of grass-
lands—underscores a potential trade-off between agricultural develop-
ment and ecological restoration goals.

Fig. 10 shows the spatial distribution of land cover conversions
across NWC between 2001 and 2024. Land cover changes were pri-
marily concentrated in grasslands, croplands, and forestlands. During
this 24-year period, grasslands and croplands areas exhibited substantial
expansion, with 50.2 % of current grasslands and 25.0 % of croplands
converted from other types. The expansion of grasslands and croplands
was primarily concentrated in ecologically sensitive or restored zones,
including the Loess Plateau, Turpan-Hami Basin, QTP, Tianshan
Mountains, and the oases of the Tarim Basin. Additionally, forestlands
area also increased by 10.7 %, mainly in the Loess Plateau, reflecting the
impact of large-scale ecological restoration projects. These spatial pat-
terns of land conversion were broadly consistent with areas showing
significant increases in ET, and NDVI, suggesting that land use
change—particularly afforestation and agricultural expansion—has
played a key role in driving evapotranspiration dynamics. To better
capture cropland dynamics, we analyzed cropland-specific changes from
2001 to 2024 (Supplementary Fig. S5). The results show that 49.1 % of
cropland (131,318.5 km?) remained unchanged, while 13.0 %
(34,631 km?) was lost and 38.0 % (1 01,483.3 km?) represented newly
added cropland, resulting in a total cropland area of 232,801.8 km? in
2024. These changes were mainly concentrated in localized oasis re-
gions such as the Hexi Corridor and southern Xinjiang, suggesting that
although cropland underwent substantial local expansion or realloca-
tion, the overall regional extent remained relatively stable.

Fig. 11 illustrates the changes in NDVI and ET, associated with land
use conversion between 2001 and 2024. As shown in Fig. 11a, average
NDVI values increased across all land use types that underwent con-
version, except for desert areas. The most pronounced increase was
observed in forestlands, with NDVI rising by 0.1337 (26.9 %). Croplands
and grasslands also experienced substantial increases of 0.1233 (50.6 %)
and 0.0556 (38.5 %), respectively. These results indicate that vegetation
greening accompanied most land cover transitions. Fig. 11b displays the
corresponding changes in total ET, for these converted areas. Croplands
exhibited the largest absolute increase in ET,, with a rise of 7.23 x 107
mm (43.5 %) in 2024 compared to 2001. Moreover, grasslands and
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Fig. 9. Interannual variation of cumulative annual land cover area (a) and annual ET, (b) for different land types in NWC.

Table 3

The land cover type transition matrix in Northwest China from 2001 to 2024 (units: km?).

2024 Forestland Shrubland Grassland Wetland Cropland Desert Others Total (2001)
2001

Forestland 72148.8 9.8 2605.5 110.0 19.8 1.0 2.3 74,897.0
Shrubland 38.3 479.0 16234.3 0.0 308.5 736.5 57.0 17853.5
Grassland 35417.0 678.3 1272,110.5 821.0 95,519.8 35,058.0 650.5 1440,255.0
Wetland 490.5 3.8 3112.5 2042.3 95.5 144.5 106.5 5995.5
Cropland 7500.5 68.0 26573.8 50.3 131,318.5 42.0 396.5 165,949.5
Desert 0.0 1766.5 155,409.8 136.0 5518.3 2279,291.5 13,091.0 2455,213.0
Others 0.0 3.8 192.0 78.0 21.5 3662.3 44,133.0 48,090.5
Total (2024) 115,595.0 3009.0 1476,238.3 3237.5 232,801.8 2318,935.8 58,436.8 4208,254.0

forestlands conversions also led to notable ETa increases of 4.46 x 107
mm (16.9 %) and 3.03 x 107 mm (29.9 %), respectively, suggesting that
afforestation projects not only enhanced vegetation cover but also
significantly increased water consumption through evapotranspiration.
4. Discussion

4.1. Performance of the improved model and the variations in ET,

The results indicate that the PT-JPL model effectively simulates ET,

11

in arid and semi-arid areas. Compared with the uncalibrated version,
parameter optimization based on flux tower data significantly improved
model performance, particularly across typical vegetation types in NWC.
By integrating the model with flux tower dataset, we optimized key
sensitivity parameters using ET, observations from different land cover
types, which improved the simulation accuracy across varied ecosys-
tems. Compared to other models (Ershadi et al., 2014; Fisher et al.,
2008), our calibrated PT-JPL framework achieved improved accuracy in
grassland, shrubland, and desert regions, as evidenced by a relatively
lower RMSE in these ecosystems. These improvements stem largely from
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reduced vegetation heterogeneity and more stable environmental con-
ditions in these ecosystems, which allow the model’s simplified struc-
ture to perform well. In contrast, accuracy was lower for cropland,
forestland, and wetland areas due to their structural complexity and
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high spatial variability in soil and vegetation characteristics.

To further assess model performance, we compared the PT-JPL ETa
estimates with two widely used satellite-based ET products—MODIS
MOD16A2 (Mu et al., 2011) and PML-V2 (Zhang et al., 2019)—using the
same flux tower observations as reference (Supplementary Figs. S6-57).
The PT-JPL dataset showed superior accuracy, with a mean R? of 0.74
and RMSE of 0.87 mm/day. PML-V2 yielded moderate agreement (R? =
0.59, RMSE = 1.05 mm/day), but exhibited larger errors in forest and
wetland areas. MOD16A2 performed the least reliably (R? = 0.31, RMSE
= 1.34 mm/day), with systematic underestimation in sparsely vegetated
and hydrologically complex regions. These results highlight the advan-
tages of the parameter-optimized PT-JPL model in capturing ETa dy-
namics across heterogeneous dryland ecosystems.

The spatial distribution of ET, values in our results reveals that the
northwest and southeast subregions show relatively high ET, values,
while the central desert zones exhibit lower values, consistent with
earlier studies (Yang et al., 2022). The PT-JPT model performs partic-
ularly well in regions with simpler vegetation structures, though it still
underestimates ET, where soil evaporation dominates, especially in
highly heterogeneous cropland and wetland systems. From 2001-2024,
ET, in NWC exhibited a modest increasing trend of 0.43 mm/year,
consistent with previous studies (Li et al., 2022). Although the overall
performance of the PT-JPL model is robust, there remains room for
further improvements, particularly in better representing soil evapora-
tion and complex land cover types. Our findings support the suitability
of the PT-JPL model, especially when optimized with EC observations,
for long-term ETa simulation in data-scarce, environmentally complex
drylands.
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4.2. Statistical attributions of ET, variability to vegetation and
environmental factors

ET variability in arid regions is influenced by multiple interacting
drivers, including vegetation dynamics, climatic conditions, and water
availability (Chen et al., 2018; Yang et al., 2022). In this study, we
analyzed six major climatic factors, precipitation, relative humidity, net
radiation, soil moisture, air temperature and groundwater, alongside
NDVI to identify their relative contributions to ET, in the dryland en-
vironments of NWC. Vegetation dynamics, represented by NDVI, is an
key driver of ET, variation in vegetated zones (Yang et al., 2022; Zheng
etal., 2022). As illustrated in Fig. 7, vegetation dynamics exhibits strong
positive partial correlations with ETa in most vegetation-rich areas,
reflecting the dominant role of transpiration in dryland regions, where a
significant portion of ET is derived from vegetation transpiration, while
soil evaporation constitutes a considerably smaller fraction (Zhang
et al., 2020).

However, the ridge regression results indicate that climatic drivers
overall explain a greater proportion (83.38 %) of ET, variability
compared to vegetation dynamics (16.62 %). Among the climatic fac-
tors, relative humidity (33.64 %), net radiation (24.87 %) and temper-
ature (14.10 %) are the most influential. This highlights the critical role
of water availability and energy input in controlling ET, under arid
conditions. In high-altitude regions such as Qinghai-Tibetan Plateau, net
radiation and air temperature exert stronger control on ET, due to
elevation-related energy limitations (Ma et al., 2019). For example,
increased ET, may lead to enhanced water vapor and local cooling,
which subsequently suppress radiation (Yu et al., 2022), reinforcing the
need to consider regional energy-water feedbacks.

Our results also confirm that water-related variables, especially
groundwater, relative humidity, and soil moisture, are key determinants
of ET, in arid zones. This aligns with prior findings that relative hu-
midity governs ET, variations in water-scarce regions (Chen et al., 2014;
Li et al., 2021; Yang et al., 2022). This also aligns with the comple-
mentary relationship (CR) theory (Brutsaert and Stricker, 1979), which
suggests that in moisture-limited environments, increases in potential
evapotranspiration (ET,) may not translate to higher ET, due to low soil
moisture availability and soil-atmosphere feedbacks (Wang and Zlotnik,
2012). Our supplementary analysis (Supplementary Fig. S8) confirms
that ETo trends do not always track ETa in arid ecosystems.

Notably, precipitation had a negligible impact on ET, variation in
NWC, accounting for only 1.0 %. This may be attributed to the fact that,
in extremely arid regions, the precipitation contributes little directly to
ET,, but indirectly affects it via subsurface water. By contrast, ground-
water and irrigation provide more stable and sustained sources of
moisture, particularly for oases and riparian ecosystems (Wang et al.,
2023, 2021). Therefore, in extremely arid areas with limited precipita-
tion, water availability from irrigation or atmospheric moisture, rather
than precipitation, dominates ETa dynamics.

4.3. Land cover change impacts on ETa and implications of afforestation
and agricultural expansion

While statistical attribution identifies dominant variables, under-
standing their ecological and land-use origins requires spatial interpre-
tation of vegetation change. Our study demonstrates that areas with
significantly increasing ET, and NDVI are often associated with land
cover transitions, particularly afforestation and farmland expansion. In
regions such as the Loess Plateau, NDVI increased by 0.0010 unit/year,
coinciding with a 0.43 mm/year increase in ET, These changes indicate
enhanced transpiration from newly established vegetation, particularly
under ecological restoration programs like the “Grain for Green” project
(Li et al., 2022; Shao et al., 2019).

Additionally, forestland area increased by 40,698.0 km? (54.3 %)
from 2001 to 2024, primarily through conversion from croplands and
grasslands, particularly in the Loess Plateau. While these changes
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enhance vegetation cover (increases of 26.9 % for forests and 38.5 % for
grasslands), they also contributed to ET, increases of 29.9 % and 16.9 %,
respectively. This trade-off between ecological restoration and water use
must be carefully managed (Li et al, 2022). Similarly, cropland
expansion in the Hexi Corridor and southern Xinjiang has raised water
demand, contributing to increased ET, and NDVI (Yang et al., 2023).
Although cropland and grassland expansion enhances vegetation pro-
ductivity (Liu et al., 2024), it also intensifies the tension between
ecological restoration and agriculture water use (Ren et al., 2022),
especially when grasslands are converted to irrigation-dependent crop-
lands. Overall, our findings highlight the dual effects of land greening
policies: while improving ecological benefits, they elevate regional
water consumption. This dual effect underscores the need for integrated
water and land management strategies. Therefore, sustainable devel-
opment in NWC requires integrated land-water planning that considers
both environmental and hydrological trade-offs.

4.4. Uncertainties and limitations

In this study, MODIS remote sensing data and bilinearly interpolated
GLDAS meteorological data were employed to drive the PT-JPL model.
While spatial resolution was harmonized to 500 m, the interpolation
process may have smoothed local climatic variability, potentially
introducing biases in ET, simulation, particularly in regions with com-
plex topography or microclimates. Despite its widespread use and good
agreement with ground observations across NWC, GLDAS still exhibits
biases in certain meteorological drivers that may lead to uncertainties in
ETa simulation, especially in complex or data-scarce regions. In NWC,
where vegetation is sparse and soil evaporation constitutes a large
portion of total ET, the PT-JPL model tends to underestimate ET,. This
bias is likely stems from the model’s simplified treatment of soil evap-
oration processes (Cui et al., 2021), which is crucial in arid regions
dominated by bare soil and low vegetation cover.

Additionally, the use of MODIS land use classification introduces
uncertainty, given its limited accuracy in heterogeneous landscapes.
Classification errors may propagate through model parameter assign-
ment and affect final ET, estimates. These uncertainties could be
reduced by incorporating high-resolution or multi-source land cover
datasets. Flux tower data availability also constrains parameter opti-
mization. Sparse site distribution, the footprint representativeness and
measurement errors of EC observations may introduce uncertainty in
regional parameter calibration (Hicks and and Baldocchi, 2020).
Therefore, improving the spatial coverage and data quality of flux tower
networks, and adopting footprint-aware matching or higher-resolution
satellite inputs (e.g., Landsat/Sentinel-2) would further enhance
model reliability.

Moreover, interactions between vegetation dynamics and climate
variability create attribution challenges (Zhang et al., 2019). Vegetation
change can influence ET, by modifying canopy interception, transpira-
tion rates, and soil evaporation, while climate variability simultaneously
alters vegetation growth through shifts in temperature, precipitation,
and radiation (Piao et al., 2019; Zhu et al., 2025). These processes from
feedback loops: in wet years, enhanced vegetation increases transpira-
tion and local cooling, possibly boosting precipitation (Bonan, 2008; Lee
et al., 2011); In dry years, vegetation decline leads to increased soil
evaporation and reduced transpiration, amplifying drought
(Seneviratne et al., 2010). Disentangling these bidirectional influences is
inherently difficult. We used ridge regression to quantify the contribu-
tion of each driver to ET, Although this method mitigates multi-
collinearity, its inherent bias may lead to inaccuracies in estimating the
true effect of individual factors (Zhao et al., 2023). Further research is
needed to enhance model structure, improve soil evaporation estima-
tion, refine land cover classification and meteorological inputs, and
employ more robust statistical methods to reduce uncertainties in ET,
attribution.
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5. Conclusions

This study investigated the spatiotemporal dynamics of ET, in NWC
from 2001 to 2024 using a PT-JPL model optimized with EC flux ob-
servations. By integrating multi-source remote sensing and meteoro-
logical data, we mapped long-term ET, trends and quantified the relative
contributions of vegetation dynamics, climatic variables, and water-
related variables using ridge regression. Our results highlight that
water availability (e.g., atmospheric moisture), vegetation dynamics
and radiation are the dominant climatic and hydrological factors regu-
lating ETa variability in fragile dryland ecosystems. Vegetation dy-
namics were found to be the primary driver of ET, in densely vegetated
areas, while water availability (e.g., relative humidity, soil moisture,
and groundwater) is the most widespread factor affecting ET, changes in
sparsely vegetated or desert regions. The contribution of radiation to ET,
is related to elevation. In high-elevation zones such as the Tibetan
Plateau, temperature exerted a stronger influence on ET,. We also
observed that land cover transformation, particularly afforestation and
farmland expansion, significantly contribute to ET, increases by altering
vegetation cover and water use patterns. This study improves our un-
derstanding of the mechanisms driving evapotranspiration in dryland
environments, offering a scientific basis for future water resource
management and ecological planning under climate change. Future
research should further refine ET models in heterogeneous landscapes
and explore the long-term impacts of projected climate change on
evapotranspiration to facilitate sustainable water resource management
in NWC and other drylands globally
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